Что такое дифференциал и интеграл
mishin05
У ДВУХ математических действий дифференцирования: по частному и по полному дифференциалам
должны быть и ДВА обратных действия интегрирования: с константой интегрирования и без константы!
В выше указанной статье я давал выдержку из работы Эйлера: «Интегральное исчисление». Сейчас я еще раз дам отрывок из этой выдержки:
Бедолага Эйлер в обеих своих работах о дифференциальном исчислении и об интегральном исчислении постоянно твердит о том, что дифференциалы не могут быть отличными от нуля, иначе их отношение не даст производную!
Но люди с особым специфическим состоянием мозга не могут понять как может существовать мир без пустых множеств и бесконечностей. Этот мир видится им не таким красочным, как рисуется в их воображаемых моделях.
Я давал в статье Необратимая деградация разума или почему дебилы победили Леонарда Эйлера формулу для получения призводной одной из степенных функций с нулем к которому стремится приращение аргумента. Ноль в этом случае означает отсутствие разницы между двумя значениями.
В статье Секта совреманных «математиков» я показал другую формулу, без нулей, которая подробно показывает как два значения аргумента становятся одним произвольным значением.
Но люди со специфическим состоянием мозга не приемлют отсутствие некоей малой величины, которую они обозначают различными буковками и которая позволяет им утверждать о некоем бесконечном числе слагаемых при интегрировании и некоей степени малости при дифференцировании.
Кто же прав? Леонард Эйлер или толпа современных «математиков»? Можно привести пример из современных учебников, где стремление к нулю разницы между двумя значениями аргумента на графике функции рассматривается как превращение секущей в касательную к линии графика функции. Пока на графике две точки, то значение производной найти невозможно. Как только обе точки сливаются в одну, то тут же сразу появляется производная со своим определенным значением.
Я не понимаю как можно глядеть в книгу и видеть фигу? Ведь пока приращение между двумя значениями аргумента не стало равным нулю, ни о какой производной речи не шло. Как только появилось значение производной, то это означает. что два значения аргумента стали одним и тем же.
Бессмысленно посещать дурку для того, чтобы убеждать пациентов в том, что они зря отрезают себе языки, суют пальцы в розетки или бьются головами о стенки. Я уже понял, что как только некая критическая масса населения получает некий вывих мозга, то процесс уже необратим.
Наверное, именно для такой ситуации природой придумана война. Чтобы нивелировать это фатальное для цивилизации соотношение.
Производная и интеграл — проще некуда
В комментариях к ней некоторые пользователи указали, что объяснение получилось не очень интуитивным, например:
“Тема сама по себе интересная, недавно снова повторял курс, но должен сказать, что на мой взгляд, в материале нет изюминки. Автор прав, что в современных изданиях часто даются темы без описания их прикладного применения, из-за чего непонятен смысл их изучения.
Но конкретно интегралы это такая тема, которую надо описать или короче, чем у вас, или намного дольше.
Иначе и школьник не поймет, и те, кто знает, ничего нового не откроют.»
Я попробую изложить материал максимально коротко и просто. Так, чтобы школьники, наконец, поняли, пусть и с помощью родителей. Итак:
Я живу на плоскости, и мой мир выглядит так:
Все мои перемещения ограничиваются прямой линией, которую я называю «ось абсцисс» и обозначаю ее латинской буквой х. Таким образом, я могу гулять от точки, обозначенной цифрой ноль (там находится мой дом), вправо до бесконечности и назад, до нуля. Цифры на оси абсцисс позволяют мне понять, как далеко я от дома. Сейчас я нахожусь в 10 делениях от него.
Как-то раз, летящие птицы навели меня на мысль, что по нашему миру можно перемещаться не только влево или вправо, но и «вверх». Потом я узнал, что есть некие люди, умеющие строить дороги, ведущие в наши плоские небеса. Было бы неплохо бы с ними переговорить. И вот я общаюсь со специалистом (С), по строительству таких дорог:
Я: Здравствуйте, вы занимаетесь строительством дорог в небо?
Я: А какие дороги вы умеете строить?
С: Самые простые варианты — прямые дороги различной крутизны.
Я: А что такое «крутизна»? Я всегда жил на горизонтальной прямой, и понятия не имею, что это слово может значить.
Чтобы нам было проще ориентироваться в нашем двухмерном мире, нанесем на его плоскость линии, идущие от цифр, расположенных на осях х и у:
Теперь любое место (точку) на плоскости мы можем обозначить двумя цифрами. Первая цифра будет обозначать расстояние от нуля до проекции этой точки на ось х.
Я: Простите, а что такое «проекция»?
С: Видите внизу, на оси абсцисс, тень от летящей птицы? Она находится в точке, обозначенной цифрой 6 на оси х. Эта тень и есть проекция тела птицы на ось х. А если бы Солнце находилось справа от птицы, мы бы увидели ее тень на оси у, в районе цифры 8. Это есть проекция тела птицы на ось ординат. Она показывает, на какой высоте летит птица. То есть, расстояние от «земли» (от оси х) до нее.
Мы можем обозначить положение птицы двумя цифрами (6, 8). Первая цифра — проекция на ось х, вторая — проекция на ось у. Эти две цифры мы называем координатами птицы.
Вместо запятой между целой и дробной частями чисел, я буду ставить точку (т.е., не 13,5 а 13.5) для того, чтобы не путать с запятыми между соседними числами.
Я: Отлично, что дальше?
С: Дальше мы отгоним птицу и нарисуем дорогу:
Вы можете заметить, что эта дорога поднимается на одну клеточку вверх, при перемещении проекции на ось х на одну клеточку вправо.
Когда человек перемещается из точки с координатами (4, 4) в точку с координатами (10, 10), его проекция на ось х меняется на 6 цифр. То есть, его тень перемещается вправо на 6 единиц (клеточек). Такое же изменение проекции происходит по оси у. То есть, он одновременно поднимается вверх также на 6 единиц.
Изменение какого-либо параметра (например, проекции на ось х или у), мы обозначаем буквой d (дельта). Изменение высоты мы запишем как dy, а изменение проекции на ось х — как dx. То есть, в данном случае, dу = 6, и dx также = 6.
Разделив изменение высоты на изменение положение тени человека при его перемещении (dy/dx), мы узнаём крутизну данного участка дороги: 6 / 6 = 1.
В нашей проектной документации мы используем очень краткое описание маршрута прокладываемой дороги. В данном случае оно будет выглядеть как математическая формула у = 1*х.
Это значит, что у всегда равен х, и это справедливо для любой точки дороги. Если человек будет находиться, например, в точке, тень от которой падает на ось х в точке 15, он будет находиться на высоте 15. Два параметра — положение тени человека на оси абсцисс и высота, на которой он находится, жестко связаны между собой вышеуказанной формулой.
Я: Да, я понял это еще на первом примере. А если мы разделим проекцию перемещения человека, идущего по нижней дороге на ось у, на перемещение его тени по оси х, (5/10), мы получим цифру 0.5, или 1/2. Это и есть показатель крутизны нижней дороги?
С: Совершенно верно! Между каждой из дорог и осью х (горизонталью) есть некоторый угол. Чем больше этот угол, тем круче поднимается дорога. Соотношение координаты любой точки дороги (если дорога прямая) по оси у и координаты этой же точки по оси х, называют тангенсом этого угла. Для каждого угла — свой тангенс. Тангенс угла верхней дороги равен 2, тангенс угла нижней, более пологой дороги, равен 0.5. Соответственно, формулы, которыми мы опишем две последние дороги будут выглядеть как у = 2х и у = 0.5х.
В математике функции обозначают, например, так: f(x) = x. Эта функция справедлива для дороги, рассмотренной нами в самом первом примере. Для второй и третьей дорог, функции будут выглядеть соответственно, как f(x) = 2x и f(x) = 0.5x. Не очень сложно, да?
Я: Не очень. Что еще мне нужно знать о дорогах?
Чтобы построить рисунок этой дороги, мы найдем (вычислим) координаты нескольких ее точек. Для этого мы подставим в формулу у = x 2 вместо х сначала 1, потом 2, затем 3 и т.д. И рассчитаем значение у для всех этих точек. Сначала подставим 1:
y = х 2 = 1 2 = 1.
Это значит, что для точки, с координатой по х равной 1, ее координата по у также равна 1. Нанесем эту точку на график:
Теперь рассчитаем координату по у для точки, с координатой по х равной 2:
y = x 2 = 2 2 = 4.
Таким образом, наша вторая точка будет иметь координаты (2, 4). Рассчитав у для точек с координатами по х 3 и 4, получим их полные координаты (3, 9) и (4, 16) соответственно. Нанесем эти точки на график:
Теперь соединим все точки линией, обозначающей дорогу:
Но возникает проблема: мы не можем посчитать крутизну какой-либо точки дороги, так как она меняется постоянно. Не получится просто взять две точки дороги сверху и снизу от исследуемой и посмотреть, насколько изменится высота при прохождении пути между ними, разделив перемещение проекции на ось у на перемещение тени по оси х. Точнее, мы можем это сделать, но полученная цифра не будет соответствовать крутизне в средней точке между ними. Смотрите:
Допустим, мы хотим узнать крутизну нашей кривой дороги на участке от начала координат (точки с координатами (0, 0)), до точки с координатами (3, 9). На этом участке дорога поднимается на 9 единиц, в то время, как удаление от начала координат по х составляет 3 единицы. Считаем крутизну так же, как мы считали ее для прямой дороги: 9 / 3 = 3. То есть, крутизна на этому участке, вроде бы, равна 3. Но если мы проведем прямую с крутизной, равной 3, то увидим, что на самом деле дорога в самом низу идет гораздо более полого, чем прямая, а в точке пересечения прямой и дороги, крутизна дороги уже больше крутизны прямой! Крутизна кривой в центре между этими точками также не совпадает с крутизной прямой. Засада. Что же делать? Как нам узнать крутизну каждой точки в ситуации, когда первая постоянно меняется, и нет ни единого прямого участка? Вот для таких случаев господин Ньютон и придумал дифференцирование.
Дифференцирование преобразует нашу функцию в другую функцию, которая как раз-таки позволяет точно вычислить крутизну дороги в данной точке. Мы не будем вдаваться в то, как он пришел к своему решению, а просто воспользуемся результатом его работы — таблицей дифференциалов. Я не буду ее приводить, в Сети такого добра навалом. Можно просто ввести в строку поиска формулу, которую нужно дифференцировать.
Для нашей функции f(x) = x 2 дифференцирование будет выглядеть таким образом: нам нужно перенести двойку из показателя степени влево, перед х, и уменьшить степень х на единицу. То есть, в данном случае степень х станет равна 1: f ‘(x) = 2x.
Обратите внимание на штрих после буквы f: f ‘(x) — так обозначается функция, которая произошла от нашей оригинальной функции. Поэтому ее называют производной функцией.
f ‘(x) = 2x = 2*1 = 2.
Эта двойка и показывает нам крутизну дороги над точкой 1 по оси х.
А какова крутизна дороги в точке с абсциссой 4 (проекцией на ось х = 4)? Подставляем эту четверку в производную функцию f ‘(x) = 2x = 2*4 и получаем цифру 8.
Эта восьмерка означает, что крутизна дороги в точке с абсциссой 4 равна 8. То есть, в этой точке дорога поднимается так же круто, как верхняя прямая на правом графике. Вот и весь смысл дифференцирования (нахождения производной).
Слева — график самой дороги, а справа — прямые, крутизна которых соответствует крутизне дороги в указанных точках. То есть, в указанных точках дороги подниматься так же тяжело, как по соответствующим этим точкам прямым. «Здесь так же круто, как там».
Давайте найдем производную нашей самой первой функции f (x) = x.
Мы проделаем такой же трюк: перенесем степень переменной вперед, перед х (это ничего не изменит, так как степень х была равна 1). Кроме того, мы уменьшим степень х на единицу. При этом степень станет равна нулю, и х превратится в единицу (потому, что любое число (кроме нуля) в нулевой степени равно 1).
Мы получили производную функции f(x) = x. Она выглядит так: f ‘(x) = 1. Что это значит? Это значит, что крутизна данной дороги на любом ее участке равна 1. То есть, при изменении абсциссы на dx, dy изменится ровно на такую же величину. В принципе, мы это знали и раньше, но теперь мы вычислили крутизну дороги через производную.
В учебниках пишут, что производная постоянной (некоторого числа) равна нулю. Почему это так?
Давайте построим дорогу, которая описывается функцией f(x) = 5. Это означает, что высота (проекция на ось у) любой точки данной дороги всегда равна 5, следовательно, dy (изменение высоты) равно нулю.
Поэтому эта дорога идет параллельно оси абсцисс, то есть, никакого изменения высоты не будет, на сколько бы мы не перемещались вправо. А раз крутизна дороги равна нулю, то и производная данной функции равна нулю (dy/dx = 0/dx = 0).
Повторим: производная отображает крутизну функции (графика, дороги), а в данном случае никакой крутизны нет. Что и имеется ввиду, когда говорят, что производная постоянной равна нулю.
Я: Хорошо, я все понял: по оригинальной функции я могу вычислить высоту дороги в любой ее точке, а по производной — крутизну в любой ее точке. Но дорога не может висеть в воздухе, она же должна опираться на ось х?
С: Совершенно правильный вопрос. Под дорогой нам придется сделать насыпь. И чем больше материала (клеточек) мы потратим на данный участок дороги, тем больше вам придется заплатить.
Я: А как вы посчитаете, сколько клеточек вам понадобится? Для участка прямой дороги, параллельной оси абсцисс f(x) = 5, все просто:
Нет проблем и с дорогой, которая поднимается (или опускается) по прямой.
Высоту найти немного сложнее: нам придется вычислить ее среднее значение. Для этого мы берем высоту (проекцию на ось у) левой верхней точки закрашенной фигуры, прибавляем к ней высоту правой верхней точки и делим пополам:
С: Господин Ньютон предусмотрел и это. Метод подсчета площади криволинейных фигур называется «интегрирование». Нам придется вспомнить то, как мы находили производную функции f (x) = x 2 Она выглядит так: f ‘(x) = 2x.
Эту, как и многие другие математические операции, можно производить и в обратную сторону. Если нам известна производная функции, мы можем восстановить эту изначальную функцию, называемую первообразной. То есть, имея функцию, показывающую изменение крутизны дороги, мы можем восстановить функцию, показывающую саму дорогу — высоту любой ее точки.
Если для нахождения производной мы переносили вперед показатель степени переменной (двойку), и уменьшали степень переменной х на единицу
f(x) = x 2 => f ‘(x) = 2x,
Но не все так просто, давайте рассмотрим дорогу, описываемую функцией
f (x) = x 2 + 4:
С: Потому, что она не влияет на крутизну графика. Вы же помните, что производная описывает крутизну оригинального (первообразного) графика на каждом его участке? А теперь посмотрите на точки обоих графиков, расположенные, к примеру над цифрой 3 на оси х. Крутизна верхнего и нижнего графиков в этих точках одинакова! То же самое касается любых двух точек этих графиков, расположенных друг под другом. Эти две дороги идут параллельно друг другу, поэтому, их крутизна везде совпадает. Отличается только высота.
Но производная — это не про высоту, а про крутизну дороги. Потому и получается, что обе функции f (x) = x 2 и f (x) = x 2 + 4 приводят к одной и той же производной f ‘(x) = 2x.
С: Да, наша производная имеет бесконечный набор первообразных. Поэтому первообразную функции f (x) = 2x записывают как F (x) = x 2 + C, где буква С может быть любым числом. От этого числа зависит только высота, на которой проходит дорога. Точнее, разница высот между данной дорогой, и дорогой, у которой С = 0. Если Вы снова посмотрите на графики выше, то увидите, что любая точка верхнего графика ровно на 4 клетки выше аналогичной точки нижнего графика.
Обратите внимание также на то, что буква F в первообразной — заглавная (большая), Первообразная является «матерью» производной, поэтому мы относимся к ней с уважением, и пишем ее имя заглавной буквой.
Все множество функций, описываемых формулой F (x) = x 2 + C, называется неопределенным интегралом. Самая распространенная формула для нахождения неопределенного интеграла выглядит так:
Теперь вернемся к нашей криволинейной фигуре.
Чтобы узнать ее площадь, в полученный нами неопределенный интеграл нужно подставить абсциссу ее правой границы — цифру 4 (при этом постоянная С отбрасывается):
F (x) = x 3 /3 = 4 3 /3 = 21 1/3 (двадцать одна целая и одна треть)
То же самое проделаем с левой границей фигуры:
F (x) = x 3 /3 = 1 3 /3 = 1/3 (одна треть)
Искомая площадь равна 21 клетке. Для проверки вы можете примерно посчитать закрашенные клетки на картинке.
Давайте подытожим все вышесказанное. Итак, у нас есть некоторая формула (функция) f(x), описывающая некую линию на графике.
Чтобы найти крутизну этой линии (функции) в какой-либо ее точке, мы находим производную данной функции f ‘(x), затем подставляем в полученную производную проекцию на ось х интересующей нас точки оригинальной функции, и вычисляем искомый параметр. Полученная цифра будет показывать тангенс угла наклона прямой, которая поднимается (или опускается) так же круто, как исходный график в исследуемой точке.
А чтобы найти площадь под участком графика исходной функции, следует найти ее первообразную F, затем, в эту первообразную по очереди подставить координаты по х правой и левой границы фигуры, площадь которой мы хотим найти, а затем вычесть два полученных числа друг из друга. Результат вычитания и есть искомая площадь.
Я: А почему вы отбросили постоянную С? Разве это не приведет к тому, что площадь под участками кривых f (x) = x 2 и f (x) = x 2 + 4, находящимися друг под другом, будут одинаковыми?
С: Не беспокойтесь, при нахождении интеграла второй функции, постоянная 4 в ее первообразной превратится в 4х, поэтому, к площади под ней добавится прямоугольник высотой 4 клеточки и ошибки не будет. Ну так что, какую дорогу Вы выбираете?
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.