Что такое динамика кратко
Значение слова динамика
Словарь Ушакова
1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.).
2. Ход развития, изменения какого-нибудь явления под влиянием действующих на него сил; ант. статика во 2 знач. (научн.). Динамика социального процесса.
3. перен. Обилие движения, действия (книж.). В пьесе много динамики.
Педагогическое речеведение. Словарь-Справочник
(греч. dinamys — сила)
1) движение, развитие, изменение какого-либо явления под влиянием действующих на него факторов;
2) (спец.) совокупность степеней силы звучания, громкости.
Лит.: Бондарко Л.В. Звуковой строй современного русского языка. — М, 1977; Романовский Н.В. Хоровой словарь. — М., 1980; Словарь иностранных слов. — М., 1984.
Начала Современного Естествознания. Тезаурус
(от греч. dynamis — сила, dynamikos — относящийся к силе, сильный)
1) раздел механики, изучающий движение тел под действием сил, согласно законам динамики Ньютона;
2) состояние движения, ход развития, изменение чего-либо под влиянием действующих на него факторов (противоположность — статика);
3) обилие движения, действия;
4) (в музыке) различные степени силы звучания, громкости и их изменения, обозначаемые итальянскими терминами: пиано — тихо, форте — громко, крещендо — постепенно усиливая, диминуэндо — постепенно затихая и др.
Справочный Коммерческий Словарь (1926)
движение; в переносном смысле — последовательное развитие какого-либо явления, в статистике под динамикой подразумевают изображение такого развития в относительных числах; напр. «динамика» движения оборотов за 4 квартала года (приняв оборот 1-го квартала за 100): 100, 125, 135, 150.
Словарь антонимов русского языка
Словарь музыкальных терминов
(от гр. dynamikos — силовой) — сила (громкость) музыкального звучания. Основные обозначения динамики: f (forte — форте) — громко, сильно; р (piano — пиано) — тихо, слабо; mf (mezzo-forte — меццо-форте) — умеренно громко; mp (mezzo-piano — меццо-пиано) — умеренно тихо; рр (pianissimo — пианиссимо) — очень тихо; ff (fortissimo — фортиссимо) — очень громко и т. д. Постепенное увеличение силы звучания — крешендо ( cresc. ); постепенное ослабление — диминуэндо ( dim. ). Динамика является важным выразительным средством, влияющим на восприятие музыки, вызывающим разнообразные ассоциации. Использование динамических оттенков обусловливается содержанием и характером музыки, особенностями ее структуры и стиля. Логика соотношения музыкальных звучностей — одно из основных условий художественного исполнения.
Тезаурус русской деловой лексики
Энциклопедический словарь
Словарь Ожегова
ДИНАМИКА, и, ж.
1. Раздел механики, изучающий движение тел под действием приложенных к ним сил.
2. Ход развития, изменения какогон. явления (книжн.). Д. общественного развития.
3. Движение, действие, развитие. В пьесе много динамики.
| прил. динамический, ая, ое (ко 2 знач.).
Динамика (физика)
Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчета).
Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.
Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.
Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.
С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.
В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.
Эрнст Мах считал, что основы динамики были заложены Галилеем.
Связанные понятия
Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.
Упоминания в литературе
Связанные понятия (продолжение)
Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
Механической связью называют ограничения, накладываемые на координаты и скорости механической системы, которые должны выполняться на любом её движении.
В математике решение дифференциального уравнения (или, шире, траектория в фазовом пространстве точки состояния динамической системы) называется устойчивым, если поведение решений, с условиями, близкими к начальным, «не сильно отличается» от поведения исходного решения. Слова «не сильно отличается» при этом можно формализовать по-разному, получая разные формальные определения устойчивости: устойчивость по Ляпунову, асимптотическую устойчивость и т.д. (см. ниже). Обычно рассматривается задача об устойчивости.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
ДИНАМИКА
— раздел механики, в к-ром изучается движение материальных тел, происходящее под действием приложенных к ним сил, вызывающих или изменяющих это движение,- так называемых ускоряющих сил.
Основы Д. заложены в нач. 17 в. Г. Галилеем (G. Galilei), к-рый первый рассмотрел движение тел под действием силы тяжести и установил закон инерции. Основные принципы Д. были четко сформулированы И. Ньютоном (I. Newton) в виде трех основных законов механики и следствий из них. Дальнейшее развитие и совершенствование законов Д. содержится в трудах Л. Эйлера (L. Euler), Ж. Д’Аламбера (J. D’Alembert), Ж. Лагранжа (J. Lagrange), где были даны общие методы составления уравнений Д. Начало аналитич. методам исследования уравнений Д. положили Ж. Лагранж, У. Гамильтон Д., основывающаяся на принципах Г. Галилея и И. Ньютона, наз. классической или ньютоновской Д., в отличие от направлений, исходящих из иных принципов (квантовая механика, релятивистская Д. и др.). Классич. Д. состоит из совокупности математич. выводов и заключений, являющихся следствиями основных законов Галилея и Ньютона. В ней аксиоматически вводятся понятия неподвижного пространства (абсолютной неподвижной системы отсчета или инерциальной системы отсчета) и абсолютного времени, одинакового для всех точек пространства. Абсолютному пространству приписываются геометрич. свойства евклидова пространства. Законы Ньютона формулируются по отношению к абсолютному пространству и абсолютному времени. Они остаются справедливыми по отношению к инерциальным системам отсчета. Заключения о движении материальных тел Д. получает с помощью построения моделей (материальной точки, абсолютно твердого тела, континуума и др.). По характеру решаемых задач Д. может быть разделена на Д. материальной точки и Д. системы материальных точек. Понятие материальной точки является основным понятием классической Д. Материальной точкой наз. такое тело, геометрич. размерами к-рого можно пренебрегать при изучении его движения, но к-рое обладает конечной массой. Первый и второй законы Ньютона формулируются в Д. только для одной материальной точки. Кроме материальной точки в Д. рассматривают еще модель абсолютно твердого тела, расстояния между точками к-рого не изменяются во время движения. Эти основные модели Д. позволяют успешно решать ряд конкретных задач о движении реальных тел. В Д. системы материальных точек рассматриваются движения таких тел, к-рые находятся во взаимосвязи друг с другом. Д. системы включает в себя Д. твердого тела, Д. систем с переменной массой, Д. упругого и пластически деформируемого тела, Д. жидкости и газа и др. Характер движения материальной системы определяется действующими на нее силами (активными силами), а также связями, наложенными на точки системы, действие к-рых может быть заменено действием сил реакций связи (пассивными силами). Действующие на систему материальных точек силы являются результатом взаимодействия отдельных материальных точек, как входящих, так и не входящих в рассматриваемую систему. В соответствии с этим различают силы внутренние и внешние. Силы могут быть представлены как функции положений материальных точек, их скоростей и времени. В Д. решаются две основные задачи: 1) определение силы, производящей данное движение материальной точки или системы; 2) определение движения материальной точки или системы, происходящее под действием заданных сил. Задачи Д. решаются при помощи дифференциальных уравнений движения. Для одной материальной точки эти уравнения выражают второй закон Ньютона и могут быть записаны в виде Изучением свойств уравнений движения механич. систем, обусловленных специфич. формой этих уравнений, занимается аналитич. Д. Она рассматривает общие принципы Д., вывод из этих принципов дифференциальных уравнений движения и методов их интегрирования. Методы аналитич. Д. широко применяются как для решения различных задач Д., так и в различных областях физики. Большое значение для исследования свойств движения механич. систем получили канонические Гамильтона уравнения, к-рые дают возможность сформулировать ряд эффективных методов решения задач Д. Помимо установления общих методов составления и интегрирования уравнений движения материальных тел, движущихся под действием ускоряющих сил, в Д. рассматривается ряд специальных задач: Д. твердого тела, Д. гироскопич. систем, теория колебаний механич. систем, теория устойчивости движения, теория удара и др. Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчёта). Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости. Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду. Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (см. квантовая механика) и при движениях со скоростями, близкими к скорости света (см. релятивистская механика). Такие движения подчиняются другим законам. С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов. В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п. Красота – страшная сила! А еще, конечно, сила в правде, а у кого-то в деньгах. Но мы-то знаем, что все это заблуждения и домыслы. Сила – в Ньютонах! Сила – векторная физическая величина, количественная мера интенсивности взаимодействия тел. Единицей измерения силы в системе СИ является Ньютон. Один Ньютон – это такая сила, которую мы можем приложить к телу массой один килограмм. При этом она изменит скорость тела на 1 м/с за одну секунду. Например, на рисунке ниже равнодействующая сил равна нулю, потому как лебедь рак и щука так никуда и не сдвинули воз. Масса – скалярная аддитивная физическая величина, являющаяся количественной мерой инертности тела, то есть его способности сохранять постоянную скорость. В системе СИ измеряется в килограммах. Если не ищете легких путей и хотите быть особенно экстравагантным, можете измерять в фунтах, пудах и унциях. Важно! Не стоит путать массу тела и вес. Ведь масса – скалярная величина, а вес – это сила, с которой тело действует на опору или подвес. Другими словами, масса всегда остается постоянной, это собственная характеристика тела. А вот вес может меняться. Например, Ваш лунный вес будет отличаться от земного, т.к. ускорение свободного падения на планетах различно. Как мы уже знаем, движение осуществляется в системе отсчета. Так вот, существуют такие системы отсчета, которые называются инерциальными (ИСО). Что это значит? Это тоже идеализация, наподобие материальной точки. Существование ИСО постулируется первым законом Ньютона, который собственно гласит вот что: Существуют системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно или покоятся, если на них не действуют никакие силы, или действие других сил скомпенсировано (равнодействующая равна нулю). Если в инерциальной системе отсчета мы разгоним автомобиль до скорости 60 км/ч, пренебрежем силой трения колес об асфальт и сопротивлением воздуха, а потом выключим двигатель, авто продолжит катиться по прямой со скоростью 60 км/ч бесконечно долго, пока не закончится дорога. Второй закон Ньютона еще называют основным законом динамики. Самая простая его формулировка такова: В ИСО ускорение, приобретаемое телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела. Еще одна формулировка второго закона Ньютона: производная импульса материальной точки по времени равна действующей на материальную точку силе. Импульс – мера количества движения, равняется произведению массы на скорость. Действительно, вспомним кинематику (производная от скорости равна ускорению) и запишем: В ИСО тела действуют друг на друга с силами, лежащими на одной прямой, противоположными по направлению и равными по модулю. Напоследок, как всегда, приведем пример решения задачи на основы динамики. Брусок массой 5кг тянут по горизонтальной поверхности за веревку, составляющую угол 30 градусов с горизонтом. Сила натяжения веревки – 30 Ньютонов. За 10 секунд, двигаясь равноускоренно, брусок изменил скорость с 2 м/с до 12 м/с. Найти коэффициент трения бруска о плоскость. Нарисуем брусок. На него действуют сила тяжести, сила нормальной реакции опоры, сила трения и сила натяжения веревки. Веревку будем считать нерастяжимой. Первым делом найдем ускорение бруска, а затем вычислим проекцию сил на горизонтальную ось и запишем второй закон Ньютона. Основы динамики в физике очень важны для понимания процесса движения. Помните, друзья, в экстремальных условиях сессии наши авторы всегда готовы поддержать Вас и облегчить учебную нагрузку. Удачи Вам! Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.Динамика (физика)
Из Википедии — свободной энциклопедии
Основы механики для «чайников». Часть 2: Динамика
В чем сила, брат?
Масса и Вес
Первый закон Ньютона
Второй закон Ньютона
Третий закон Ньютона