Что такое дроби 5 класс объяснение и примеры
Как объяснить ребенку дроби: 5 класс не за горами
Выходим на битву с домашним заданием по математике! Враг — непокорные дроби. Программа 5 класса. Стратегически важная задача — объяснить ребенку дроби. Поменяемся ролями с учителем и попробуем сделать это «малой кровью», без нервов и в доступной форме. Обучить одного солдата куда легче, чем роту…
ria.ru
Как объяснить ребенку дроби
Не ждите, пока ребенок пойдет в 5 класс и встретится с дробями на страницах учебника по математике. Ответ на вопрос «Как объяснить ребенку дроби» рекомендуем поискать на кухне! И сделать это прямо сейчас! Даже если вашему малышу только 4-5 лет, смысл понятия «дроби» он в состоянии уяснить и даже может научиться простейшим действиям с дробями.
Мы делили апельсин.
Много нас, а он один
Эта долька для ежа, эта долька для чижа…
А для волка — кожура.
Помните стихотворение? Вот самый наглядный пример и самое эффективное руководство к действию! Объяснить ребенку дроби проще всего на примере еды: режем яблоко на половинки и четвертинки, делим пиццу между членами семьи, разрезаем буханку хлеба перед обедом и т.п. Главное, перед тем, как съесть «наглядное пособие» не забудьте озвучить, какую часть от целого вы «уничтожаете».
Сделайте акцент на том, что ЦЕЛЫЙ апельсин (яблоко, шоколадка, арбуз и пр.) — это 1 (обозначаем цифрой 1).
Апельсин или шоколадку мы делим, можно еще сказать «дробим» на несколько частей.
Покажите ребенку хорошо знакомый предмет — линейку. Объясните, что между числами есть промежуточные значения — части.
i.ytimg.com
Смысл понятия «дроби» и правильную запись легко показать на примере конструктора. В числителе НАД чертой пишем какая часть, а в знаменателе ПОД чертой — на сколько таких частей было разделено целое.
gladtolearn.ru
Обязательно на наглядном примере покажите разницу между дробями с одинаковым числителем, но разными знаменателями.
gladtolearn.ru
На примере 4-х квадратов одинакового размера покажите, как можно разделить их на одинаковое/разное количество частей. Пусть ребенок сам разрежет ножницами бумажные заготовки, а затем запишет при помощи дробей результаты.
gladtolearn.ru
Вспомните квадрат и то, как мы делили его на 4 части. Квадрат — это целое, мы можем записать его как 1. Но как записать в виде дроби: что в числителе, что в знаменателе? Если мы делили квадрат на 4 части, то целый квадрат, это 4/4. Если мы делили квадрат на 8 частей, то целый квадрат это 8/8. Но это все равно квадрат, т.е. 1. И 4/4, и 8/8 — это единица, целое!
Как объяснить ребенку дроби: задаем ПРАВИЛЬНЫЕ вопросы
Чтобы ученик 5 класса понял тему «Дроби» и научился выполнять вычисления с дробями, заглянем в методику. Нам, родителям, важно понимать, как объясняет детям дроби учитель в школе, иначе мы можем окончательно запутать своего «солдата».
Дробь — это число, которое является частью целого предмета. Оно всегда меньше единицы.
Пример 1. Яблоко — это целое, а половинка — одна вторая. Она же меньше, чем целое яблоко? Половинки делим еще раз пополам. Каждая долька — одна четвертая от целого яблока, и она меньше, чем одна вторая.
Дробь — это количество частей от целого.
Пример 2. Например, в магазин одежды завезли новый товар: 30 рубашек. Продавцы успели разложить и развесить лишь одну треть всех рубашек из новой коллекции. Сколько рубашек они развесили?
Ребенок легко устно посчитает, что треть (одна третья) — это 10 рубашек, т.е. 10 развесили и вынесли в торговый зал, а еще 20 осталось на складе.
ВЫВОД: Дробями можно измерять все, что угодно, не только куски пиццы, но и литры в бочках, поголовье диких животных в лесу, площадь и т.п.
Приводите самые разные примеры из жизни, чтобы ребенок 5 класса понял СУТЬ дробей: это поможет в дальнейшем в решении задач и выполнении вычислений с правильными и неправильными дробями, и обучение в 5 классе будет не в тягость, а в радость.
Как убедиться, что ребенок усвоил, что в записи дробей обозначают числа в числителе и в знаменателе?
Пример 3. Спросите, что значит 5 в дроби 4/5?
— Это на сколько частей поделили.
— А что значит 4?
— Это сколько взяли.
Сравнение дробей — самая, пожалуй, сложная тема.
Пример 4. Предложите ребенку сказать, какая дробь больше: 3/10 или 3/20? Кажется, что раз 10 меньше 20, то и ответ очевиден, но это не так! Вспомните про квадраты, которые мы разрезали на части. Если два одинаковых по размеру квадрата разрезать — один на 10, второй на 20 частей — ответ очевиден? Так какая дробь больше?
Действия с дробями
Если вы видите, что ребенок хорошо усвоил смысл записи в виде дроби, можно переходить к простым арифметическим действиям с дробями. На примере конструктора можно сделать это очень наглядно.
Пример 5.
edinstvennaya.ua
Пример 6. Математическое лото на тему «Дроби».
www.kakprosto.ru
Уважаемые читатели, если вы знаете другие эффективные методики, как объяснить ребенку дроби, делитесь в комментариях. С радостью пополним нашу копилочку дельных школьных советов.
Предлагаем Вашему вниманию программы развивающих занятий с собаками- терапевтами в зависимости от возраста ребёнка и Ваших пожеланий:
Обыкновенные дроби
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Доля целого
Доля — это каждая равная часть, из суммы которых состоит целый предмет.
Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.
У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.
Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.
Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:
Понятие дроби
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:
Виды дробей:
Какие еще бывают дроби:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.
Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Как устроена обыкновенная дробь
Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.
Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.
Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.
Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.
Черта между числителем и знаменателем — символ деления.
Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.
Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.
Как устроена десятичная дробь
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства дробей
Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:
где a, b, k — натуральные числа.
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!
Действия с дробями
С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.
Сравнение дробей
Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
Сравним 1/5 и 4/5. Как рассуждаем:
Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.
Пример. Сравнить 2/7 и 1/14.
Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
Сокращение дробей
Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.
Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.
В этом примере делим обе части дроби на двойку.
Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.
Сложение и вычитание дробей
При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.
Не забудьте проверить, можно ли сократить дробь и выделить целую часть.
При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).
Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 * 2 * 3 * 5 = 90
Полученные числа запишем справа сверху над числителем.
Ход решения одной строкой:
Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Умножение и деление дробей
Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:
Не забываем про сокращение. Это может облегчить вычисления.
Чтобы умножить два смешанных числа, надо:
Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:
Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.
Числа, произведение которых равно 1, называют взаимно обратными.
Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.
Для деления смешанных чисел необходимо:
Обыкновенные дроби простое объяснение для 5 класса: виды, сравнение, сложение, вычитание, умножение, деление.
Каждый школьник, перешагнув первую школьную ступеньку из начальной школы, начинает изучать новый для него материал — дроби. Не смотря на то, что на первый взгляд тема кажется не простой, на самом деле ничего сложного в ней нет, мы постарались ее объяснить доступным языком. Опытные педагоги рекомендуют объяснять ребенку тему дробей и в более раннем возрасте, так как, в повседневной жизни мы постоянно сталкиваемся с дроблением, делением предметов на доли — режем арбуз, торт, пиццу на определенное количество частей, каждая из которых будет частью целого, что и можно записать в виде дроби.
Обыкновенные дроби 5 класс объяснение темы
Если ваш ребенок не понимает тему дробей, очень важно объяснить ему так же, как объясняют в классе и учитывать требования учителя. Детям самим не так просто самостоятельно понять все действия с дробями, задача родителей помочь и привести примеры, которые встречаются каждый день в повседневной жизни. Дайте ребенку шоколадку и попросите отломить от нее часть: целая — это единица, половина — одна вторая, а если плитку разломить на три части, это будет одна треть.
Чтобы лучше понять что такое дробь, нужно запомнить, что это значит — дробить. Когда мы режем торт, каждый кусок будет частью целого торта или очищаем мандарин, каждая долька — это часть целого мандарина. В обоих случаях, это доли целого. Не сложно привести и другие примеры, каждый день мы что-то режем, отделяем.
Арбуз разрезали на 6 частей, каждая часть (доля), это одна шестая от целого плода.
На этой картинке два мандарина. В одном оказалось 6 долек, в другом — 9.
На картинке ниже наглядно видно, как прописываются дроби:
Вот еще пример, желтый круг разрезали на 2 части, это будет одна вторая доли (1/2), зеленый — на 3 (1/3), синий — на 4 (1/4).
Итак, что нужно знать ребенку о дробях?
Чем на меньшее число поделено что-то целое, тем долей больше, а если на большее число, значит они меньше.
Виды обыкновенных дробей
Доли в математике обозначают дробями, называются они — обыкновенные. Для записи используют горизонтальную (-) или наклонную черту (/), например:
Далее, нужно понять, сколько кусочков осталось: 6-2=4. Осталось 4 куска, в этом случае дробь выглядит так — 4/6 четыре шестых.
Обыкновенная дробь правильная неправильная
Еще дроби бывают правильными, например те, которые имеют такой вид — 2/8 и неправильными — 8/2 или 8/8. Возьмем неправильную дробь 41/5, читать ее следует так — восемь целых, одна пятая: 8 1/5. Это число называют смешанным, так как в нем отделяются целая часть и дробная. Другими словами мы наглядно видим сколько взяли целых тортов и сколько его частей. Чтобы ребенок осмысленно сокращал дроби, нужно показать ему это на практике и тогда он не будет ошибаться, сокращая дроби.
Для понимания: неправильная дробь трансформируется в целое число, сначала числитель делиться на знаменатель, в результате получается целое число (записывается, как целая часть) и остаток (записывается над чертой) в числитель. Знаменатель, при этом, не меняется.
К неправильным относят и те дроби, числитель и знаменатель которых, имеют одинаковое число, а при делении получается единица — 2/2, 3/3, 4/4 и т.д. Т.е., было взято столько кусков торта, на сколько его поделили.
Наглядно вы можете посмотреть на картинке:
Умножение и деление обыкновенных дробей
Для того, чтобы совершить действие умножения, нужно умножить числитель одной дроби на числитель другой и, соответственно, перемножить знаменатели. Что у нас получается? В результате вычисления (умножения) мы получаем дробь с числителем, который равен произведению числителей в дробях, и со знаменателем, равным произведению в дробях знаменателей.
Пример:
Умножается число 3 на число 7 (числители). Умножаются знаменатель 5 на знаменатель 10. Записать данное действие можно двумя способами, это вы видите на картинке.
Пример умножения целого числа и дроби:
Целое число (2) записывается в виде дроби (2/1), в которой знаменателем будет единица (1).
Если нужно произвести деление дробей, поступают следующим образом: умножают первую дробь на перевернутую вторую.
Для простоты восприятия воспользуемся правилом сокращения: делим делитель и знаменатель на одинаковое число, например, дробь 21/63 выглядит не очень хорошо для восприятия, гораздо понятнее будет так — 1/3.
Делим смешанные числа:
Сначала их нужно представить неправильными дробями, затем, разделить друг на друга, вот, что получилось:
Пример:
Обыкновенные дроби сложение вычитание
Правила сложения
Начнем с дробей, у которых одинаковые знаменатели, это самое простое вычисление — высчитывается сумма только числителей — тех чисел, которые находятся над черточкой.
Например:
Можно записать и так:
Немного сложней выполнить действие сложения, если знаменатели разные. В этом случае необходимо сначала:
Пример:
Далее:
Затем, каждую часть дроби, знаменатель и числитель, нужно умножить на свой множитель, который мы определили:
Далее производим сложение дробей:
Правила вычитания
Действие производится аналогичным образом, если у дроби знаменатели одинаковые, необходимо найти разность числителей.
Если у дроби знаменатели разные, Так же, как и при сложении, находим наименьшее кратное число.
Сравнение дробей 5 класс
Прежде всего необходимо обратить внимание на их знаменатели, если они одинаковые, меньше будет та, чей числитель больше.
Пример:
А если числительные одинаковые, меньше та, чей знаменатель больше.
Пример:
Сложнее обстоит дело, если знаменатели разные. В этом случае сначала определяем общий знаменатель (под чертой) и приводим к нему обе дроби.
Пример:
Далее получаем:
Сравниваем:
Запомните!
P.S. Итак, мы рассмотрели одну из тем по математики для 5 класса. Ее необходимо знать, чтобы ребенок смог двигаться дальше и изучать более сложный материал.
Для лучшего понимания покажите ребенку видео.