Что такое двойной угол
Тригонометрические формулы: косинус, синус и тангенс двойного угла
Формулы двойного угла дают возможность выразить тригонометрические функции (синус, косинус, тангенс, котангенс) угла ` 2\alpha` через эти самые функции угла `\alpha`.
Перечень всех формул двойного угла
Записанный ниже список — это основные формулы двойного угла, которые наиболее часто используются в тригонометрии. Для косинуса их есть три, они все равносильны и одинаково важны.
`sin \ 2\alpha=` `2 \ sin \ \alpha \ cos \ \alpha`
`cos \ 2\alpha=cos^2 \alpha-sin^2 \alpha`, ` cos \ 2\alpha=1-2 \ sin^2 \alpha`, `cos \ 2\alpha=2 \ cos^2 \alpha-1`
`tg \ 2\alpha=\frac<2 \ tg \alpha><1-tg^2 \alpha>`
`ctg \ 2\alpha=\frac
Следующие тождества выражают все тригонометрические функции угла ` 2\alpha` через функции тангенс и котангенс угла `\alpha`.
Формулы для косинуса и синуса двойного угла выполняются для любого угла `\alpha`. Формулы для тангенса двойного угла справедливы для тех `\alpha`, при которых определен `tg \ 2\alpha`, то есть при ` \alpha\ne\frac\pi4+\frac\pi2 n, \ n \in Z`. Аналогично, для котангенса они имеют место для тех `\alpha`, при которых определен `ctg \ 2\alpha`, то есть при ` \alpha\ne\frac\pi2 n, \ n \in Z`.
Доказательство формул двойного угла
Все формулы двойного угла выводятся из формул сумы и разности углов тригонометрических функций.
Возьмем две формулы, для сумы углов синуса и косинуса:
`sin(\alpha+\beta)=` `sin \ \alpha\ cos \ \beta+cos \ \alpha\ sin \ \beta` и `cos(\alpha+\beta)=` `cos \ \alpha\ cos \ \beta-sin \ \alpha\ sin \ \beta`. Возьмем `\beta=\alpha`, тогда `sin(\alpha+\alpha)=` `sin \ \alpha\ cos \ \alpha+cos \ \alpha\ sin \ \alpha=2 \ sin \ \alpha \ cos \ \alpha`, аналогично `cos(\alpha+\alpha)=` `cos \ \alpha\ cos \ \alpha-sin \ \alpha\ sin \ \alpha=cos^2 \alpha-sin^2 \alpha`, что и доказывает формулы двойного угла для синуса и косинуса.
Два другие равенства для косинуса ` cos \ 2\alpha=1-2 \ sin^2 \alpha` и `cos \ 2\alpha=2 \ cos^2 \alpha-1` сводятся к уже доказанному, если в них заменить 1 на `sin^2 \alpha+cos^2 \alpha=1`. Так `1-2 \ sin^2 \alpha=` `sin^2 \alpha+cos^2 \alpha-2 \ sin^2 \alpha=` `cos^2 \alpha-sin^2 \alpha` и `2 \ cos^2 \alpha-1=` `2 \ cos^2 \alpha-(sin^2 \alpha+cos^2 \alpha)=` `cos^2 \alpha-sin^2 \alpha`.
Чтобы доказать формулы тангенса двойного угла и котангенса, воспользуемся определением этих функций. Запишем `tg \ 2\alpha` и `ctg \ 2\alpha` в виде `tg \ 2\alpha=\frac
В случае с тангенсом разделим числитель и знаменатель конечной дроби на `cos^2 \alpha`, для котангенса в свою очередь — на `sin^2 \alpha`.
Предлагаем еще посмотреть видео, чтобы лучше закрепить теоретический материал:
Примеры использования формул при решении задач
Формулы двойного угла в большинстве случаев используются для преобразование тригонометрических выражений. Рассмотрим некоторые из случаем, как можно на практике применять их при решений конкретных задач.
Пример 1. Проверить справедливость тождеств двойного угла для `\alpha=30^\circ`.
Решение. В наших формулах используется два угла `\alpha` и `2\alpha`. Значение первого угла задано в условии, второго соответственно будет `2\alpha=60^\circ`. Также нам известны числовые значения для всех тригонометрических функций этих углов. Запишем их:
`sin 30^\circ=\frac 1 2`, `cos 30^\circ=\frac <\sqrt 3>2`, `tg 30^\circ=\frac <\sqrt 3>3`, `ctg 30^\circ=\sqrt 3` и
`sin 60^\circ=\frac <\sqrt 3>2`, `cos 60^\circ=\frac 1 2`, `tg 60^\circ=\sqrt 3`, `ctg 60^\circ=\frac <\sqrt 3>3`.
`sin 60^\circ=2 sin 30^\circ cos 30^\circ=` `2 \cdot \frac 1 2 \cdot \frac <\sqrt 3>2=\frac <\sqrt 3>2`,
`cos 60^\circ=cos^2 30^\circ-sin^2 30^\circ=` `(\frac <\sqrt 3>2)^2 \cdot (\frac 1 2)^2=\frac 1 2`,
Что и доказывает справедливость равенств для заданного в условии угла.
Пример 2. Выразить `sin \frac <2\alpha>3` через тригонометрические функции угла `\frac <\alpha>6`.
Решение. Запишем угол синуса следующим образом ` \frac <2\alpha>3=4 \cdot \frac <\alpha>6`. Тогда, применив два раза формулы двойного угла, мы сможем решить нашу задачу.
Вначале воспользуемся равенством синуса двойного угла: ` sin\frac <2\alpha>3=2 \cdot sin\frac <\alpha>3 \cdot cos\frac <\alpha>3 `, теперь снова применим наши формулы для синуса и косинуса соответственно. В результате получим:
` sin\frac <2\alpha>3=2 \cdot sin\frac <\alpha>3 \cdot cos\frac <\alpha>3=` `2 \cdot (2 \cdot sin\frac <\alpha>6 \cdot cos\frac <\alpha>6) \cdot (cos^2\frac <\alpha>6-sin^2\frac <\alpha>6)=` `4 \cdot sin\frac <\alpha>6 \cdot cos^3 \frac <\alpha>6-4 \cdot sin^3\frac <\alpha>6 \cdot cos \frac <\alpha>6`.
Ответ. ` sin\frac <2\alpha>3=` `4 \cdot sin\frac <\alpha>6 \cdot cos^3 \frac <\alpha>6-4 \cdot sin^3\frac <\alpha>6 \cdot cos \frac <\alpha>6`.
Формулы тройного угла
Эти формулы, аналогично к предыдущим, дают возможность выразить функции угла ` 3\alpha` через эти самые функции угла `\alpha`.
Доказать их можно, используя равенства сумы и разности углов, а также хорошо известные нам формулы двойного угла.
`sin \ 3\alpha= sin (2\alpha+ \alpha)=` `sin 2\alpha cos \alpha+cos 2\alpha sin \alpha=` `2 sin \alpha cos \alpha cos \alpha+(cos^2 \alpha-sin^2 \alpha) sin \alpha=` `3 sin \alpha cos^2 \alpha-sin^3 \alpha`.
Заменим в полученной формуле `sin \ 3\alpha=3 sin \alpha cos^2 \alpha-sin^3 \alpha` `cos^2\alpha` на `1-sin^2\alpha` и получим `sin \ 3\alpha=3 \ sin \ \alpha-4sin^3 \alpha`.
Также и для косинуса тройного угла:
`cos \ 3\alpha= cos (2\alpha+ \alpha)=` `cos 2\alpha cos \alpha-sin 2\alpha sin \alpha=` `(cos^2 \alpha-sin^2 \alpha) cos \alpha-2 sin \alpha cos \alpha sin \alpha+=` `cos^3 \alpha-3 sin^2 \alpha cos \alpha`.
Заменив в конечном равенстве `cos \ 3\alpha=cos^3 \alpha-3 sin^2 \alpha cos \alpha` `sin^2\alpha` на `1-cos^2\alpha`, получим `cos \ 3\alpha=4cos^3 \alpha-3 \ cos \ \alpha`.
С помощью доказанных тождеств для синуса и косинуса можно доказать для тангенса и котангенса:
Для доказательства формул угла ` 4\alpha` можно представить его как ` 2 \cdot 2\alpha` и примерить два раза формулы двойного угла.
Для вывода аналогичных равенств для угла ` 5\alpha` можно записать его, как ` 3\alpha + 2\alpha` и применить тождества суммы и разности углов и двойного и тройного угла.
Аналогично выводятся все формулы для других кратных углов, то нужны они на практике крайне редко.
Способы преобразования
Чтобы понять, как выражаются тригонометрические функции двойных углов, необходимо воспользоваться их записью в виде nα, где n принадлежит натуральному числу. Значение основного выражения отображается математически без скобок. Используя это свойство, можно составить следующее уравнение: sin nα = sin (nα).
Для приведения произведения sin nα х sin nα, используется аналогичное свойство. Выражение можно упростить до 2 (n sin α). Основой тождества является n sin α. В математике используются и другие равенства:
Доказательства равенств
Чтобы подтвердить уравнения на сложение, вычитание и умножение, понадобится подойти к доказательству комплексным способом. Используя формулы синуса с плюсом для углов (α+β) и косинуса для β и α, получится синусα·косинусβ+косинусα·синусβ. Пример для вычитания: соsα ·cosβ-синусα·синусβ.
При вычислении разницы следует придерживаться аналогичного принципа. Результат будет следующим: косинус (α+α) равен двойному значению косинуса минус двойное значение синуса. Формула двойного угла косинуса и синуса доказана. При решении задач из дидактических материалов используются и другие уравнения при положительном и отрицательном значении альфа, при нуле либо половинном π.
Для их доказательства необходимо находить корень из числа z, возводить целое значение в квадрат либо иную степень. Чтобы определиться с ходом решения, необходимо следить за графиком функции:
Сложные действия вычисляются с помощью калькулятора. Если задача состоит из нескольких частей, для нахождения результата потребуется преобразовать первичное уравнение в более простое. Используются следующие равенства:
Решение задач
Задача 1: дан угол, отличный от 2α, например 3π5. Нужно найти его значение. Решение: угол 3π5 необходимо преобразовать. Получается α = 3π5:2 = 3π10. Из результата следует, что ФДУ для косинуса принимает следующий вид: cos3π5 = cos23π10 — sin23π10.
Задача 2: необходимо представить sin2α3 через функции, когда α = 6. Решение: заменить 2α3 = 4·α6. Если подставить данные, получится sin2α3. Выражая через функцию, принимая формулу двойного угла, записывается выражением: sin2α3 = 2·sinα3·cosα3. Используя cosα3, применяя sin2α2, получится результат sin2α3 = 4·sinα6·cos3α6 − 4·sin3α6·cosα6.
Тождества при других значениях
По такой же методике выводятся формулы четвёртой степени. Значение 4α нужно представить в виде 2·2α. Равенство выводится с помощью ФДУ дважды. Для получения равенства пятой степени представляется значение угла 5α в виде 3α+2α.
Такая сумма позволяет использовать формулы двойного и тройного углов с целью преобразования в конечный результат. По аналогичной схеме преобразовываются разные степени тригонометрических функций, но их применяют в тригонометрии редко.
Область применения
Чтобы определить значение тригонометрической функции (ТФ), рассматривается окружность с радиусом в единицу и диаметрами, взаимно перпендикулярными. Для вычислений потребуется отложить от точки, принадлежащей окружности, дуги любых длин. Они будут положительными, если их отложить против часовой стрелки.
Отрицательное значение принимают те, которые размещены по часовой стрелке. Если конец дуги имеет длину f, тогда проекция радиуса на любом диаметре примет значение косинуса дуги. Под аргументом понимается число, которое рассматривается геометрически как f либо радианная мера угла. Если аргумент ТФ взят за угол, тогда его значение выражается и в градусах.
Доказано, что значение острых углов больше нуля, но меньше p/2. Для таких величин ТФ рассматривается как отношение катетов к гипотенузе. Эти элементы принадлежат прямоугольному треугольнику. Название связано с наличием угла в 90 градусов. Для решения задач с тригонометрическими функциями используется и теорема Пифагора, в основе которой находится свойство прямоугольного треугольника: квадрат гипотенузы равен сумме квадратов катетов.
Дуга делит окружность на несколько частей. Углы, размещенные в первой четверти, больше нуля, во второй косинус меньше, но синус больше, в третьей ТФ меньше 0, а в четвёртой получаются значения, противоположные второй. Для построения окружности потребуется циркуль, а для измерения углов транспортир.
Для получения точного чертежа рекомендуется наносить данные на миллиметровую бумагу либо тетрадь в клетку.
Формулы двойного угла — значения функций, свойства и примеры решений
На уроках математики школьники 8−11 классов изучают интегралы, знакомятся с таблицей значений аргумента (переменная). Через формулу двойного угла (ФДУ) выражаются косинус, синус, тангенс, котангенс с произведением 2α. В основе находится тригонометрическая функция угла альфа. Чтобы её отобразить на графике, используются координаты и окружность.
Способы преобразования
Чтобы понять, как выражаются тригонометрические функции двойных углов, необходимо воспользоваться их записью в виде nα, где n принадлежит натуральному числу. Значение основного выражения отображается математически без скобок. Используя это свойство, можно составить следующее уравнение: sin nα = sin (nα).
Для приведения произведения sin nα х sin nα, используется аналогичное свойство. Выражение можно упростить до 2 (n sin α). Основой тождества является n sin α. В математике используются и другие равенства:
В геометрии и алгебре чаще применяются следующие известные формулы: синус2α = cos2α — sin2α, cos2α = 1 − 2·sin2α. Можно разложить производные sin и cos, если угол имеет любой градус. Решение тангенса потребуется, если в основе задачи находится tg2α, при этом значение угла отлично от суммы π4 и π2. Частный случай, когда в задании есть целое число z, а α ≠ π4 + π2·z. Если рассматривать для котангенса ФДУ при любом альфа, ctg2α не определён на промежутке π2. Для косинуса двойного угла характерна тройная запись.
Доказательства равенств
Чтобы подтвердить уравнения на сложение, вычитание и умножение, понадобится подойти к доказательству комплексным способом. Используя формулы синуса с плюсом для углов (α+β) и косинуса для β и α, получится синусα·косинусβ+косинусα·синусβ. Пример для вычитания: соsα ·cosβ-синусα·синусβ.
При вычислении разницы следует придерживаться аналогичного принципа. Результат будет следующим: косинус (α+α) равен двойному значению косинуса минус двойное значение синуса. Формула двойного угла косинуса и синуса доказана. При решении задач из дидактических материалов используются и другие уравнения при положительном и отрицательном значении альфа, при нуле либо половинном π.
Для их доказательства необходимо находить корень из числа z, возводить целое значение в квадрат либо иную степень. Чтобы определиться с ходом решения, необходимо следить за графиком функции:
Сложные действия вычисляются с помощью калькулятора. Если задача состоит из нескольких частей, для нахождения результата потребуется преобразовать первичное уравнение в более простое. Используются следующие равенства:
Их можно привести к косинус2α — синус2α. Если заменить единицу суммой квадратов, тогда sin2α + cos2α = 1. Получается, что синус2α + косинус2α = 1. Подставив данные, выходит: 1 − 2·sin2α.
Чтобы доказать ФДУ котангенса, применяется равенство ctg2α = cos2αsin2α. Преобразовав данные, получится для tg2α равенство 2·sinα·cosαcos2α — sin2α. Разделив выражение на cos2α, отличное от нуля, получится, что tgα определен. Другое выражение поделится на sin2α. Значение sin2α ≠ 0 будет иметь смысл при любом α, если ctg2α имеет смысл.
Решение задач
Для убеждения в справедливости 2α для α=30° применяется значение тригонометрических функций для углов. Если α=30°, тогда 2α будет соответствовать 60°. Необходимо проверить значение sin 60° = 2·sin 30°·cos 30°, cos 60° = cos2 30° — sin2 30°. Если подставить данные, получится подробная функция: tg 60°= 2·tg 30°1 — tg2 30° и ctg 60° = ctg230° — 12·ctg 30°.
Так как sin 30° = 12, cos 30° = 32, tg 30° = 33, ctg 30° = 3 и sin 60° = 32, cos 60° = 12, tg 60° = 3, ctg 60° = 33, тогда выводится следующее: 2·sin 30°·cos 30° = 2·12·32 = 32, cos230° — sin230° = (32)2-(12)2 = 12,2·tg 30°1-tg230° = 2·321 — (33) = 3 и ctg230° — 12·ctg 30° = (3)2 − 12·3 = 33.
Задача 1: дан угол, отличный от 2α, например 3π5. Нужно найти его значение. Решение: угол 3π5 необходимо преобразовать. Получается α = 3π5:2 = 3π10. Из результата следует, что ФДУ для косинуса принимает следующий вид: cos3π5 = cos23π10 — sin23π10.
Задача 2: необходимо представить sin2α3 через функции, когда α = 6. Решение: заменить 2α3 = 4·α6. Если подставить данные, получится sin2α3. Выражая через функцию, принимая формулу двойного угла, записывается выражением: sin2α3 = 2·sinα3·cosα3. Используя cosα3, применяя sin2α2, получится результат sin2α3 = 4·sinα6·cos3α6 − 4·sin3α6·cosα6.
Тождества при других значениях
На практике студенты высших учебных заведений математических факультетов встречаются с задачами, для решения которых применяются формулы тройного, четверного и другого угла. В их основе находятся тригонометрические функции. Чтобы их вывести, используются формулы сложения двойного угла: sin3α = sin (2α+α) = 3·sinα·cos2α — sin3α.
При замене cos2α на 1-sin2α формула примет новый вид: sin3α = 3·sinα-4·sin3α. По аналогичной схеме приводится формула косинуса тройного угла: косинус3α = косинус (2α+α) = косинус3α — 3·синус2α·косинусα.
По такой же методике выводятся формулы четвёртой степени. Значение 4α нужно представить в виде 2·2α. Равенство выводится с помощью ФДУ дважды. Для получения равенства пятой степени представляется значение угла 5α в виде 3α+2α.
Такая сумма позволяет использовать формулы двойного и тройного углов с целью преобразования в конечный результат. По аналогичной схеме преобразовываются разные степени тригонометрических функций, но их применяют в тригонометрии редко.
Область применения
Чтобы определить значение тригонометрической функции (ТФ), рассматривается окружность с радиусом в единицу и диаметрами, взаимно перпендикулярными. Для вычислений потребуется отложить от точки, принадлежащей окружности, дуги любых длин. Они будут положительными, если их отложить против часовой стрелки.
Отрицательное значение принимают те, которые размещены по часовой стрелке. Если конец дуги имеет длину f, тогда проекция радиуса на любом диаметре примет значение косинуса дуги. Под аргументом понимается число, которое рассматривается геометрически как f либо радианная мера угла. Если аргумент ТФ взят за угол, тогда его значение выражается и в градусах.
Доказано, что значение острых углов больше нуля, но меньше p/2. Для таких величин ТФ рассматривается как отношение катетов к гипотенузе. Эти элементы принадлежат прямоугольному треугольнику. Название связано с наличием угла в 90 градусов. Для решения задач с тригонометрическими функциями используется и теорема Пифагора, в основе которой находится свойство прямоугольного треугольника: квадрат гипотенузы равен сумме квадратов катетов.
Дуга делит окружность на несколько частей. Углы, размещенные в первой четверти, больше нуля, во второй косинус меньше, но синус больше, в третьей ТФ меньше 0, а в четвёртой получаются значения, противоположные второй. Для построения окружности потребуется циркуль, а для измерения углов транспортир.
Для получения точного чертежа рекомендуется наносить данные на миллиметровую бумагу либо тетрадь в клетку.
Формулы тригонометрии (ЕГЭ 2022)
В этой статье мы изучим все тригонометрические формулы, которые могут понадобится на ЕГЭ.
От основного тригонометрического тождества, до формул тройного угла.
Мы решим вместе 22 примера, чтобы «набить руку» и уметь решать любые задачи.
Формулы тригонометрии — коротко о главном
Основные формулы:
Название формулы | Формула |
---|---|
Основное тригонометрическое тождество (ночью разбудят — должен вспомнить!) | \( \displaystyle si< |
Выражение тангенса через синус и косинус (по сути альтернативное определение тангенса) | \( \displaystyle tg\ \alpha =\frac |
Выражение котангенса через синус и косинус или через тангенс (по сути альтернативное определение котангенса) | \( \displaystyle ctg\ \alpha =\frac |
Синус суммы и разности: | \( \displaystyle \sin \left( \alpha \pm \beta \right)=sin\alpha \cdot cos\beta \pm cos\alpha \cdot sin\beta \) |
Косинус суммы и разности: | \( \displaystyle \cos \left( \alpha \pm \beta \right)=cos\alpha \cdot cos\beta \mp sin\alpha \cdot sin\beta \) |
Тангенс суммы и разности: | \( \displaystyle tg\left( \alpha \pm \beta \right)=\frac |
Формулы понижения степени:
Данная группа формул позволяет перейти от любого тригонометрического выражения к рациональному.
Формулы преобразования функций:
Данная группа формул позволяет преобразовать произведение в сумму и сумму в произведение.
Формулы преобразования произведений функций:
Таблица значений тригонометрических функций:
Тригонометрические функции
Как ты уже понял, тригонометрические выражения – это выражения, в котором переменная содержится под знаком тригонометрических функций.
Стоп! Вот прямо здесь мы и остановимся! Я задам тебе вопрос: какие тригонометрические функции ты знаешь?
Верно! Их всего четыре!
Хотя, положа руку на сердце, я скажу тебе, что знание последней не так уж и обязательно (хотя желательно!), поскольку она легко выражается через тангенс.
Да и сам тангенс, по сути – тоже лишь тригонометрическое выражение, зависящее от синуса и косинуса.
Таким образом, у нас есть две основные тригонометрические функции – синус и косинус и две «второстепенные» – тангенс и котангенс.
Я не буду сейчас определять, что такое синус и косинус, ты и так это уже знаешь из предыдущих разделов. Я лишь скажу пару слов про важность этих понятий.
Итак, пара слов: первые зачатки тригонометрии возникли более 3 тысяч лет назад. Я думаю, что тебе очевидно, что тогда люди не занимались «формулами ради формул».
Так что тригонометрические функции имеют полезные практические свойства. Я не буду их перечислять. Если тебе интересно, ты всегда можешь найти море информации в интернете.
Если все, что я сказал выше, звучало для тебя древним эльфийским языком, то посмотри статью о тригонометрической окружности.
А сейчас я приведу тебе некоторые основные соотношения между тригонометрическими величинами, которые оказываются полезными при решении задач.
Таблица значений тригонометрических функций
Тебе нужно помнить таблицу значений тригонометрических функций для углов хотя бы первой четверти! Я сейчас нарисую здесь эту таблицу, а потом объясню тебе, как сделать ее запоминание проще.
Или ее расширенный вариант для всех «основных углов»:
Я ни в коей мере не настаиваю (и даже не надеюсь), что ты выучишь вторую таблицу. Сказать по правде, я и сам ее не знаю.
Но первую таблицу знать совершенно необходимо.
Не всегда на экзамене у тебя будет время, чтобы вывести самостоятельно, скажем, синус \( \displaystyle 60\) градусов.
Для того, чтобы запомнить первую таблицу можно поступить так:
Запомнить всего 5 значений для, скажем, синуса. Затем тебе не составит труда заметить, что для косинуса все значения идут «наоборот»:
Тангенс можно получить, разделив синус угла на косинус. Как же всегда вывести большую таблицу, зная малую, я тебе непременно расскажу чуть позднее.
Формулы тригонометрии (основа)
Название формулы | Формула |
---|---|
Основное тригонометрическое тождество (ночью разбудят — должен вспомнить!) | \( \displaystyle si< |
Выражение тангенса через синус и косинус (по сути альтернативное определение тангенса) | \( \displaystyle tg\ \alpha =\frac |
Выражение котангенса через синус и косинус или через тангенс (по сути альтернативное определение котангенса) | \( \displaystyle ctg\ \alpha =\frac |
Первое следствие формулы 1: | \( \displaystyle t< |
Второе следствие формулы 1: | \( \displaystyle ct< |
Третье следствие формулы 1: | \( \displaystyle sin\ \alpha =\pm \sqrt<1-co< |
Четвертое следствие формулы 1: | \( \displaystyle cos\ \alpha =\pm \sqrt<1-si< |
Уже получилось 7 формул! К сожалению, это еще далеко не предел. Совсем не предел.
Тем не менее последние 4 формулы есть ни что иное, как простое следствие первой. В самом деле, ты заметил, почему это так?
Формула 4 получается делением обеих частей формулы 1 на \( \displaystyle co<^<2>>\alpha \) и применением формулы 2.
Формула 5 получается аналогично: разделим обе части формулы 1 на \( \displaystyle si<
Формулы 1 – 5 мы трактуем вполне однозначно. Чего нельзя сказать про формулы 6 и 7. В чем «фишка» формул 6 и 7?
Их особенность заключается в знаке \( \displaystyle \pm \), который стоит перед корнем.
Как это понимать? А понимать надо так: в некоторых случаях мы ставим плюс, а в некоторых – минус.
Теперь у тебя должен возникнуть вопрос: в каких-таких «некоторых случаях»? Туманность этой формулировки снимается следующим правилом:
Если в формуле
\( \displaystyle sin\ \alpha =\pm \sqrt<1-co<^<2>>\alpha >\)
угол \( \displaystyle \alpha \) таков, что \( \displaystyle \text\ \text< >\!\!\alpha\!\!\text < >
Они подскажут тебе, какой нужно выбирать знак для той или иной функции, так что ты не допустишь досадной ошибки.
К тому же это избавит тебя от мучительных размышлений по поводу того «а зачем в этом примере нужен этот угол?!».
4 примера на тренировку
Решения:
Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол.
По условию задачи: \( \displaystyle \alpha \in \left( \frac<3\pi ><2>;2\pi \right)\). Смотри на картинку. Какая это четверть? Четвертая.
Каков знак косинуса в четвертой четверти? На картинке стоит знак «плюс», значит косинус в четвертой четверти положительный.
Тогда нам остается выбрать знак «плюс» перед \( \displaystyle \frac<1><3>\). \( \displaystyle \text
Ответ: \( \displaystyle 1\).
Ну вот видишь, ничего сложного. Абсолютно ничего. Нужно лишь запомнить знаки синуса, косинуса и тангенса (котангенса) по четвертям. Ну а как это делать автоматически описано в статье, посвященной тригонометрической окружности.
Давай разберем оставшиеся примеры.
2. Так как \( \displaystyle sin\ \alpha =\pm \sqrt<1-co<^<2>>\alpha >\), то все, что нам нужно – это подставить \( \displaystyle cos\alpha =\frac<2\sqrt<6>><5>\) в нашу формулу. Что мы с тобой и сделаем:
Опять нужно определиться со знаком. Смотрим на рисунок. Четверть – снова четвертая. Знак синуса четвертой четверти – отрицательный. Ставим знак «минус». \( \displaystyle sin\alpha =-\frac<1><5>\), тогда \( \displaystyle 5sin\alpha =-5\cdot \frac<1><5>=-1\).
3. Ничего нового. Скорее для закрепления. Снова подставляем в формулу \( \displaystyle cos\ \alpha =\pm \sqrt<1-si<
Смотрим на знак косинуса при \( \displaystyle \alpha \in \left( \frac<\pi ><2>;\pi \right)\). Какая это четверть? Вторая. Косинус второй четверти отрицательный. Тогда выбираем знак «минус».
4. Здесь перед нами стоит задачка чуть сложнее. Однако, не стоит огорчаться. Давай вспомним, что такое тангенс. Это ведь отношение синуса к косинусу. Синус нам уже дан.
Так как \( \displaystyle \alpha \in \left( \pi ;\frac<3\pi > <2>\right)\) (это угол в третьей четверти, а косинус в третьей четверти имеет знак «минус»), то \( \displaystyle cos\alpha =-\frac<1><\sqrt<26>>\).
Теперь все, что нам осталось, это воспользоваться определением тангенса:
Ответ: \( \displaystyle 5\).
Уф, выдохнули! Ну вот мы с тобой решили некоторые (довольно типичные и распространенные) примеры. Ты спросишь: «И что, это все?». Я отвечу, что, увы нет. Это далеко не все.
Далее нам потребуются более сложные формулы тригонометрии.
Формулы тригонометрии (более сложные)
Название формулы | Формула |
---|---|
Синус суммы и разности: | \( \displaystyle \sin \left( \alpha \pm \beta \right)=sin\alpha \cdot cos\beta \pm cos\alpha \cdot sin\beta \) |
Косинус суммы и разности: | \( \displaystyle \cos \left( \alpha \pm \beta \right)=cos\alpha \cdot cos\beta \mp sin\alpha \cdot sin\beta \) |
Тангенс суммы и разности: | \( \displaystyle tg\left( \alpha \pm \beta \right)=\frac |
Синус двойного угла (следствие формулы 1) | \( \displaystyle sin2a=2sina\cdot cosa\) |
Косинус двойного угла (следствие формулы 2) | \( \displaystyle cos2a=co< \( \displaystyle cos2a=2co< |
Тангенс двойного угла: | \( \displaystyle tg2a=\frac<2tga><1-t< |
Как распознать, что тебе требуются именно эти, а не какие-нибудь другие формулы?
Очень просто: если ты видишь косинус, синус, тангенс от суммы двух углов или двойных углов, то это должно служить тебе индикатором – мне нужно применить одну из формул для суммы/разности или для двойного угла.
Звучит несколько путано? Давай посмотрим на примеры. Заодно я дам еще ряд важных комментариев.
9 примеров на тренировку
Список этих заданий можно продолжать бесконечно… Но я выбрал здесь: а) не самые сложные формулы; б) не самые «страшные» углы.
Страшные углы я припас нам напоследок 🙂
Решения:
Кстати, здесь тебе понадобится знание также тех формул, которые я привел в самом начале. Поехали!
1. \( \displaystyle \frac<12sin11<>^\circ cos11<>^\circ >
Ни ты, ни я не знаем, чему в точности равен синус или косинус \( \displaystyle 11\) градусов, и чему равен синус \( \displaystyle 22\) градусов.
Но что мы должны заметить?
Верно! \( \displaystyle 22<>^\circ =2\cdot 11<>^\circ \). Значит, снизу записан синус двойного угла! Тогда применим формулу синуса двойного угла:
\( \displaystyle sin22<>^\circ =2sin11<>^\circ \cdot cos11<>^\circ \)
Подставим это значение в знаменатель нашей дроби и сократим!
\( \displaystyle \frac<12sin11<>^\circ \cdot cos11<>^\circ >
Ответ: \( \displaystyle 6\).
Ну вот, ничего страшного не случилось? Пример решился в одну строчку с применением одной единственной формулы. Другое дело, иногда не совсем очевидно, какую из формул применять.
Тут тебе нужен опыт. Нужно, как говорится, «набить руку» на таких примерах.
Опять-таки, сразу можно заметить, что \( \displaystyle 34<>^\circ =2\cdot 17<>^\circ \). \( \displaystyle 34\) градуса стоит в косинусе. Это говорит о том, что в примере спрятан косинус двойного угла. Вспомним его определение:
Что же у нас есть в числителе? А там все наоборот: синус в квадрате вычитается из косинуса в квадрате. Тогда в числителе у нас написана формула чего?
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
3. \( \displaystyle 36\sqrt<6>ctg\frac<\pi ><6>\sin\frac<\pi ><4>\)
Здесь нет ничего сложного, абсолютно ничего! Но есть одно «но!».
Это «но» заключается в том, что тебе нужно помнить таблицу значений тригонометрических функций для углов хотя бы первой четверти! (Как ее запомнить я рассказал ранее, а сейчас просто приведу ее еще раз).
Или ее расширенный вариант для всех «основных углов»:
И посмотрим в таблицу:
\( \displaystyle ctg\frac<\pi ><6>=\sqrt<3>\), \( \displaystyle sin\frac<\pi ><4>=\frac<\sqrt<2>><2>\). Подставим эти значения в нашу формулу:
Ответ: \( \displaystyle 108\)
Вот видишь, знание первой таблицы совершенно необходимо! Без нее – вообще нет никакой тригонометрии. Так что, пожалуйста, будь добр, выучи.
Это не потребует от тебя значительных усилий и избавит от массы глупых ошибок в будущем. Еще раз специально скажу: большую таблицу учить не надо.
4. По условию \(cosa=-0,4\), нам же надо найти \(-47cos2a\).
Что тогда надо сделать?
Верно, наша цель – выразить косинус двойного угла через угол «одинарный». Есть ли такая формула? Конечно, есть! Вот она:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
5. \( \displaystyle \frac<10sin6a><3cos3a>\) – это то, что надо вычислить, а \( \displaystyle sin3a=0,6\) – это то, что есть.
Ну что же, надо отталкиваться от того, что есть. Вроде бы этого должно быть достаточно. Здесь все опять несложно!
Нужно лишь заметить, что \( \displaystyle sin6\alpha =2sin3\alpha \cdot cos3\alpha \). Давай это и подставим в числитель исходной дроби. Что же мы имеем?
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
6. \( \displaystyle 26\text
На самом деле здесь можно поступать двояко. Но о втором способе я скажу тебе чуть позже. А пока давай подумаем, что нужно найти.
А найти нужно по сути косинус от суммы двух углов. Причем один из них известен. Давай не будем долго думать и разложим косинус суммы на произведение:
Вспомни единичную окружность (ну или на худой конец посмотри в расширенную таблицу).
\frac<3\pi ><2>=270<>^\circ \) равен нулю!
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
7. Нужно найти: \( \displaystyle t<^<2>>a=6\).
Тут все можно сделать только зная, что такое тангенс и основное тригонометрическое тождество. По порядку:
Тогда решить задачу можно вот как: найти по отдельности значения синуса в квадрате и косинуса в квадрате, а затем при помощи полученных значений найти тангенс. Так мы с тобой и сделаем:
Вначале найдем синус в квадрате.
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
8. Надо найти \( \displaystyle \frac<10cosa+4sina+15><2sina+5cosa+3>\), зная, что \( \displaystyle tga=-2,5\).
На какую мысль тебя это должно было натолкнуть?
А на ту, что если нам дан тангенс, то и наше выражение нужно привести к такому виду, чтобы оно зависело от тангенсов, которые мы потом в него и подставим. Напомню тебе, что
У меня же в выражении есть просто косинусы и синусы. Что нам нужно сделать?
Давай возьмем и «насильно» разделим числитель и знаменатель дроби на \( \displaystyle cos\alpha \). Это поможет мне «выделить» тангенс в чистом виде:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
9. Нужно найти \( \displaystyle 7\cos \left( \pi +\beta \right)-2\text
Давай опять проанализируем, что нам нужно вычислить: искомая формула состоит из разности косинуса от суммы двух углов и синуса от суммы двух углов.
Давай упрощать: раскроем каждую из сумм (опять-таки повторюсь, что далее я опишу способ, который позволит обходиться без раскрытия такого рода сумм):
Опять-таки, тебе должно быть известно, что \( \displaystyle cos\pi =-1,
Если тебе это неизвестно, то настоятельно рекомендую тебе повторить тему тригонометрическая окружность.
Тогда моя формула примет вид:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Формулы приведения
Теперь мы знаем уже почти что все. Осталось совсем немного. Последнее, на что я хочу обратить внимание, это обещанный мною метод «легкого» перехода от большой таблицы значений углов к маленькой.
Этот переход обеспечивают так называемые формулы приведения. Еще раз поясню, зачем они используются: ты будешь их применять в том случае, когда тебе нужно найти синус, косинус или тангенс угла, большего чем \( \displaystyle 90\) градусов.
Например, найти синус угла \( \displaystyle 855\) градусов.
Здесь мы поступаем следующим образом. Во-первых, нам понадобятся следующие знания:
Алгоритм использования формул приведения
Шаг 1. Если мы вычисляем значение тригонометрической функции от отрицательного угла – делаем его положительным при помощи группы формул (2).
Шаг 2. Отбрасываем для синуса и косинуса его периоды: \( \displaystyle 2\pi k\) (по \( \displaystyle 360\) градусов), а для тангенса – «половинки» \( \displaystyle \pi k\) (\( \displaystyle 180\) градусов).
\( \displaystyle sin\ 855<>^\circ =sin\left( 2\cdot 360<>^\circ +135<>^\circ \right)=sin\ 135<>^\circ \)
\( \displaystyle tg\ 225<>^\circ =tg\left( 180<>^\circ +45<>^\circ \right)=tg\ 45<>^\circ \)
Шаг 3. Если оставшийся «уголок» меньше \( \displaystyle 90\) градусов, то задача решена: ищем его в «малой таблице»
Шаг 4. Иначе ищем, в какой четверти лежит наш угол \( \displaystyle \alpha \): это будет 2, 3 или 4 четверть. Смотрим, какой знак имеет искомая функция в четверти. Запомнили этот знак.
Шаг 5. Представляем угол \( \displaystyle \alpha \) в одной из следующих форм:
…так, чтобы оставшийся угол \( \displaystyle \beta \) был больше нуля и меньше \( \displaystyle 90\) градусов.
\( \displaystyle 135<>^\circ =90<>^\circ +45<>^\circ \)
\( \displaystyle 315<>^\circ =270<>^\circ+45<>^\circ \)
\( \displaystyle 240<>^\circ =180<>^\circ +60<>^\circ \)
В принципе не важно, в какой из двух альтернативных форм для каждой четверти ты представишь угол. На конечном результате это не скажется.
Шаг 6. Теперь смотрим, что у нас получилось:
Шаг 7. Ставим перед получившимся выражением знак из пункта 4.
3 примера на тренировку
Решения:
1. \( \displaystyle sin\ 2130<>^\circ \)
Действуем согласно нашему алгоритму. Выделяем целое число кругов для \( \displaystyle 2130<>^\circ \):
\( \displaystyle \frac<2130<>^\circ ><360<>^\circ >=5,91\ldots \)
\ 2130<>^\circ =sin\left( 5\cdot 360<>^\circ +330<>^\circ \right)=sin\ 330<>^\circ \)
Ну вот, лишнее мы отбросили. Теперь разбираемся со знаком.
\( \displaystyle 330<>^\circ \) лежит в 4 четверти. Синус четвертой четверти имеет знак «минус», его я и не должен забыть поставить в ответе. Далее, представляем \( \displaystyle 330<>^\circ \) согласно одной из двух формул пункта 5 правил приведения. Я выберу: \( \displaystyle 330<>^\circ =270<>^\circ +60<>^\circ \)
\( \displaystyle sin\ 330<>^\circ =sin\left( 270<>^\circ +60<>^\circ \right)\)
Теперь смотрим, что получилось: у нас случай с \( \displaystyle 270\) градусами, тогда отбрасываем \( \displaystyle 270<>^\circ \) и синус меняем на косинус. И ставим перед ним знак «минус»!
\( \displaystyle sin\left( 270<>^\circ +60<>^\circ \right)=-cos60<>^\circ \)
\( \displaystyle 60\) градусов – угол в первой четверти. Мы знаем (ты мне обещал выучить малую таблицу!) его значение:
\( \displaystyle cos\ 60<>^\circ =0,5\)
Тогда получим окончательный ответ: