Что такое геоид в геодезии
Геоид
Гео́ид (буквально — «нечто подобное Земле») — геометрическое тело, отражающее свойства потенциала [1] силы тяжести [2] на Земле (вблизи земной поверхности), важное понятие в геодезии.
Содержание
Определение понятия «геоид»
Геоид определяется как эквипотенциальная поверхность земного поля тяжести [3] (уровенная поверхность), приблизительно совпадающая со средним уровнем вод Мирового океана в невозмущённом состоянии и условно продолженная под материками. Отличие реального среднего уровня моря от геоида может достигать 1 м.
По определению эквипотенциальной поверхности, поверхность геоида везде перпендикулярна отвесной линии.
Некоторые авторы обозначают вышеописанное понятие термином не «геоид», а «основная уровенная поверхность», в то время как сам геоид определяется как 3-мерное тело, ограниченное этой поверхностью. [4]
История
Термин «геоид» был предложен в 1873 году немецким математиком Иоганном Бенедиктом Листингом для обозначения геометрической фигуры, более точно отражающей форму Земли, чем эллипсоид вращения.
Применение
Геоид является поверхностью, относительно которой ведётся отсчёт высот над уровнем моря. Точное знание геоида необходимо, в частности, в навигации — для определения высоты над уровнем моря на основе геодезической (эллипсоидальной) высоты, непосредственно измеряемой GPS-приёмниками, а также в физической океанологии — для определения высот морской поверхности.
Квазигеоид
Фигура геоида зависит от распределения масс и плотностей в теле Земли. Она не имеет точного математического выражения и является практически неопределимой, в связи с чем в геодезических измерениях в России и некоторых других странах вместо геоида используется его приближение — квазигеоид. Квазигеоид, в отличие от геоида, однозначно определяется по результатам измерений, совпадает с геоидом на территории Мирового океана и очень близок к геоиду на суше, отклоняясь лишь на несколько сантиметров на равнинной местности и не более чем на 2 метра в высоких горах.
См. также
Примечания
Ссылки
Полезное
Смотреть что такое «Геоид» в других словарях:
ГЕОИД — истинная форма Земли; неправильное геометрическое тело, поверхность которого в каждой своей точке перпендикулярна к действительному направлению отвесной линии в этой точке. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское… … Морской словарь
Геоид — геометрически сложная поверхность равных значений потенциала силы тяжести, совпадающая с невозмущенной поверхностью Мирового океана и продолженная над континентами. Г. определяет фигуру Земли, он существенно отличается от физ. поверхности Земли,… … Геологическая энциклопедия
геоид — Фигура Земли, образованная уровенной поверхностью, совпадающей с поверхностью Мирового океана в состоянии полного покоя и равновесия и продолженной под материками. [ГОСТ 22268 76] [ГОСТ Р 52334 2005] геоид Геометрически сложная поверхность с… … Справочник технического переводчика
ГЕОИД — (от гео. и греч. eidos вид) фигура Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины … Большой Энциклопедический словарь
ГЕОИД — ГЕОИД, геометрическая форма, которую теоретически должна иметь реальная поверхность Земли. В действительности Земля не шар, а имеет приблизительно эллиптическую форму, с выпуклостью в районе экватора и уплощением к полюсам. см. также ГЕОДЕЗИЯ … Научно-технический энциклопедический словарь
геоид — сущ., кол во синонимов: 1 • форма (79) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
геоид — а, м. géoïde m. нем. Geoid. Геод. сл. геогр. Фигура Земли, ограниченная поверхностью Мирового океана, мысленно продолженной внутри материков. Крысин 1998. Лекс. СИС 1954: гео/ид … Исторический словарь галлицизмов русского языка
геоид — Фигура Земли, образованная уровенной поверхностью, совпадающей с поверхностью Мирового океана (в состоянии покоя и равновесия) и продолженной под материками … Словарь по географии
геоид — 3.13 геоид: Уровенная поверхность, наилучшим образом аппроксимирующая уровень моря как в локальном, так и в глобальном случаях. Примечание Уровенная поверхность является эквипотенциальной поверхностью земного гравитационного поля, которая везде… … Словарь-справочник терминов нормативно-технической документации
Форма Земли, или что такое геоид
Всем привет. Из дискуссий о форме Земли я часто замечаю, что люди знают слово геоид, но зачастую не представляют, что именно это слово означает. Хочу тезисно осветить тему.
В последующие века геодезия (наука о фигуре Земли) продолжала развиваться, а с появлением космических аппаратов в 20 веке появилась и спутниковая геодезия, с помощью которой удалось дополнительно уточнить параметры фигуры Земли.
В качестве системы описания параметров Земли используется WGS 84 или её российский аналог ПЗ-90. В качестве отсчётного тела используется общеземной эллипсоид вращения с большой полуосью (то есть средним экваториальным радиусом) 6378 км и сжатием эллипсоида 1/298. [3]
Например сверху Северный полюс, снизу Южный, вращаем этот эллипс вокруг оси, проходящей через полюса, и получаем общеземной эллипсоид вращения. Внимание, вопрос: видите ли вы отличие этого эллипса от окружности? Вряд ли. Поэтому если вы упоминаете сплюснутость Земли сами или слышите о сплюснутости от другого человека, вспоминайте эту картинку.
В некоторых сетевых дискуссиях люди меня уверяли, что если фигура хоть сколько-то отличается от шара, то это уже не шар. Вот такая, понимаете ли, принципиальность. Мои попытки рассказать этим людям, что идеальных геометрических фигур в физической реальности не существует, были не очень успешны. И когда я демонстрировал вышеприведённую картинку и спрашивал, чем же она так отличается от окружности, мне либо говорили, что я рисую вообще что-то не то, либо разводили руками.
Из вышесказанного вы уже понимаете, что вторым приближением к форме Земли является общеземной эллипсоид вращения (с вышеуказанными величинами большой полуоси и сжатия). Если представить себе Землю без суши, с ровным дном и без неоднородных вкраплений (плотные породы и тому подобное), то форма Земли (а именно поверхность мирового океана) с хорошей точностью совпадала бы с эллипсоидом вращения.
К слову, эллипсоид вращения и образовался как раз из-за суточного вращения нашей планеты, и когда возникает вопрос «почему нет горба воды в районе экватора из-за вращения», я отвечаю, что «горб» как раз есть, но он размазан между экватором и полюсом. Сумма гравитационной и центробежной сил как раз и дают направление силы тяжести (локальной вертикали), которая практически перпендикулярна к нашему эллипсоиду.
Практически перпендикулярна, однако в следующем, третьем приближении, есть отклонения направления силы тяжести (называется уклонением отвеса), связанные с неоднородностями: неровная поверхность суши и дна водоёмов, а также неравномерное распределение плотностей во внутренней структуре Земли. Это приводит к тому, что реальная поверхность мирового океана отличается от эллипсоида на величины до 100 метров. Такая уровенная поверхность невозмущённой поверхности мирового океана, причём продолженная под континентами, и называется геоидом. [4]
Так выглядит карта высот геоида относительно эллипсоида:
Понятно, что если на глаз трудно отличить даже 20-километровую сплюснутость Земли (эллипсоид в сравнении с шаром), то отличия геоида от эллипсоида в десятки метров в масштабе были бы тем более незаметны. Поэтому для целей визуализации отличий геоида от эллипсоида (не от шара, подчёркиваю) была сделана картинка, в которой эти отличия были утрированы на несколько порядков. А затем эту картинку кто-то вбросил со словами «так выглядит Земля без воды!» И почему-то этот вброс в своё время приобрёл вирусный характер, и до сих пор многие так и продолжают считать, что это форма Земли без воды:
Ну и завершим мы такой, например, вполне подходящей картинкой, на которой не в масштабе, а условно приведены разные поверхности всех трёх приближений к форме Земли (сфера, эллипсоид вращения, геоид):
[1] Эти измерения проводили с помощью триангуляционной разметки на Земле и последующих астрономических измерений высоты кульминации выбранной звезды.
[3] Приведённые значения округлены, более точные значения составляют 6378136 метров и 1/298.258.
Что такое геоид в геодезии
Геоид и квазигеоид
Геоид (греч. geoeides, от ge — Земля и eidos — вид) — образованная основной уровенной поверхностью замкнутая фигура принимаемая за обобщенную поверхность Земли.
Поверхность геоида является одной из уровенных поверхностей потенциала силы тяжести. Эта поверхность, мысленно продолженная под материками, образует замкнутую фигуру, которую принимают за сглаженную фигуру Земли. Часто под геоидом понимают уровенную поверхность, проходящую через некоторую фиксированную точку земной поверхности у берега моря.
Понятие о геоиде сложилось в результате длительного развития представлений о фигуре Земли как планеты, а самый термин «геоид» предложен И. Листингом в 1873 г. От геоида отсчитывают нивелирные высоты. По современным данным, средняя величина отступления геоида от наиболее удачно подобранного земного сфероида составляет около ±50 м, а максимальное отступление не превышает ±100 м.
Высота геоида в сумме с ортометрической высотой определяет высоту Н соответственной точки над земным эллипсоидом. Поскольку распределение плотности внутри Земли с необходимой точностью неизвестно, высоту Н в геодезической гравиметрии и геодезии, согласно предложению М. С. Молоденского, определяют как сумму нормальной высоты и высоты квазигеоида.
Для точного определения поверхности геоида какой-либо точки необходимо выполнить комплекс измерений, непосредственно на поверхности геоида. Что практически не возможно, либо в соответствующей точке на физической поверхности Земли с учетом распределения масс в этом месте, что также не предоставляется возможным. По этой причине было предложено вместо поверхности геоида использовать квазигеоид, — поверхность близкую к поверхности геоида, определяемая только по результатам измерений на земной поверхности без привлечения данных по распределению масс.
Поверхность квазигеоида определена значениями потенциала силы тяжести на земной поверхности, и для изучения квазигеоида результаты измерений не нужно редуцировать внутрь притягивающей массы. Квазигеоид отступает от геоида в высоких горах на 2–4 м, на низменных равнинах — на 0,02-0,12 м, на морях и океанах поверхности геоида и квазигеоида совпадают.
Фигуру квазигеоида определяют методом астрономо-гравиметрического нивелирования или через предварительное определение возмущающего потенциала по материалам наземных гравиметрических съёмок и наблюдений за движением искусственных спутников Земли. Последние данные необходимы в связи с недостаточной гравиметрической изученностью некоторых областей Земли
Поверхность геоида, из-за ее сложности, математически никак не выражается, поэтому на ней нельзя решать геодезические задачи. Для решения таких задач взамен поверхности геоида принимают поверхность эллипсоида вращения — близкой по форме геоиду, но математически правильной поверхности, на которую можно перенести результаты измерений выполненных на физической поверхности Земли.
Влияние модели геоида при ГНСС-измерениях
Эллипсоид – это фигура с известными геометрическими свойствами, основными параметрами которой являются
a – большая полуось
b – малая полуось
α = (a-b)/a – полярное сжатие
Из-за сложной формы земной поверхности нельзя подобрать такую фигуру эллипсоида, которая одинаково хорошо подходила бы ко всем участкам Земли. Для минимизации ошибок локализации были введены различные референц-эллипсоиды для отдельных стран/континентов.
В России примером референц-эллипсоида является всем хорошо известный эллипсоид Красовского с параметрами по ГОСТ Р 51794-2008:
a = 6378245 м
α =1/298,3
Геоид – это уровенная (эквипотенциальная) поверхность, приблизительно совпадающая с уровнем мировых вод в невозмущенном состоянии, в каждой точке которой направление силы тяжести перпендикулярно. Поверхность геоида неравномерна и пересекается с поверхностью эллипсоида.
Самые популярные модели геоида – EGM96 и EGM2008, но на самом деле их гораздо больше.
Модели могут быть как глобальными, так и региональными или даже локальными, рассчитанными специально для вашей территории работ. Могут различаться по частоте шага сетки измерений, например, EGM2008 2,5′ или EGM2008 1′. Вторая, естественно, более точная, но и вес такой модели больше.
Посмотреть основные модели геоида, скачать, а также обрезать их под свой регион, чтобы уменьшить вес модели, можно на сайте:
http://icgem.gfz-potsdam.de/calcgrid
Также, обрезка глобальной модели геоида возможна в ПО Trimble TBC.
Модель геоида загружается либо в полевое ПО, либо в ПО для постобработки, а затем назначается для использования.
Высота геоида над эллипсоидом называется аномалией высоты. В зарубежных источниках или ПО также распространено понятие undulation, т.е. ондуляция. С точки зрения геодезии эти понятия являются синонимами, однако в других дисциплинах ондуляция может иметь иной смысл!
1. От референц-эллипсоида – эллипсоидальная (геодезическая) высота. Такую высоту мы получаем с помощью ГНСС-измерений, когда модель геоида не учитывается в расчетах.
2. От геоида – ортометрическая высота или высота над уровнем моря.
2.1 От квазигеоида по нормали – нормальная (нивелирная) высота. Нормальную высоту мы получаем с помощью любого прибора, связанного с гравиметрическими измерениями на поверхности Земли. Это может быть нивелир, теодолит или тахеометр – горизонтируя прибор с помощью уровня, мы устанавливаем его в соответствии с направлением силы тяжести – по нормали.
Если необходимо увязать спутниковые измерения с измерениями на основе силы тяжести, то используем модель геоида
При ГНСС-измерениях превышения рассчитываются математически по эллипсоиду.
Применяя в расчете модель геоида, мы можем привести эллипсоидальную высоту к нормальной благодаря значениям ондуляции.
Если нам необходимо перейти к Балтийской системе высот или любой другой системе высот, основанной на нивелирных измерениях, то используем модель геоида + калибровку на местности.
Можно обойтись только калибровкой в том случае, если участок работ небольшой (несколько десятков км), а аномальные зоны на нем исключены. К аномальным зонам можно отнести горы, плотности и пустоты в земле, неоднородности земной коры, нефтяные и газовые моря.
Например, при вычислении объемов тел нет такой необходимости, потому что измерения относительные
В заключение хочется сказать, что применение или неприменение модели геоида всегда зависит от ваших задач. Хорошо обдумайте ее, а затем принимайте решение. Главное, следите за тем, чтобы во время работы (в одном проекте) не произошло переключения между ортометрической и эллипсоидальной высотой!
Что касается терминов, то споры о них до сих пор ведутся как внутри российской школы гравиметрии, так и в сравнении с зарубежной. Поэтому зачастую в теории высот могут быть расхождения в разных источниках.
Системы высот в геодезии
Понятие высоты, несмотря на кажущуюся очевидность, является одним из наиболее сложных и тонких понятий геодезии. Это связано с двойственным смыслом высоты: с одной стороны, это расстояние между точками в пространстве, т.е. чисто геометрическое понятие; с другой стороны, в физическом понимании, это величина, определяющая энергетический уровень той или иной точки в поле силы тяжести.
Если две точки лежат на одной отвесной линии, геометрическую высоту можно измерить непосредственно как расстояние между ними; так измеряют высоты различных предметов (высота геодезического сигнала, инструмента над центром, высота человека, дерева, дома и т.д.). Очевидно, что геодезическую высоту, т.е. высоту в геометрическом смысле, так измерить нельзя: в точке поверхности Земли неизвестны ни направление нормали к эллипсоиду, вдоль которой нужно измерять высоту, ни положение отсчетной точки на эллипсоиде, которая к тому же физически недоступна, поскольку эллипсоид проходит, как правило, внутри Земли.
Физическое понятие высоты связано с работой в поле силы тяжести. Так, если точки лежат на одной уровенной поверхности, например, на поверхности какого-либо водоема, где отсутствуют течения, естественно, считать, что высоты этих точек одинаковы. Если же вода течет от одной точки к другой, говорят, что высота первой точки больше. В этом случае мерой высоты выступает работа, которую совершает сила тяжести при перемещении водной часы, т.е. разность потенциалов между указанными точками. Поскольку потенциал на уровенной поверхности постоянен, разность потенциалов любых точек, лежащих на двух различных уровенных поверхностях, всегда постоянна. Поэтому разность потенциалов является мерой высоты или высотой в физическом понимании. Как известно, разность потенциалов можно получить в результате геометрического нивелирования и измерений силы тяжести.
Еще одной причиной, по которой высоту рассматривают и изучают отдельно от плановых координат, является различие в методах получения этих величин: до недавнего времени плановые координаты находили из обработки линейных и угловых измерений, выполненных на поверхности Земли, а высоты преимущественно из геометрического нивелирования, сопровождаемого измерениями силы тяжести. Определение высоты по измерениям расстояний и вертикальных углов затруднено из-за влияния вертикальной рефракции, из-за чего вертикальные углы измеряют со значительно меньшей точностью, чем горизонтальные.
Спутниковые методы позволяют определить прямоугольна координаты точек поверхности Земли, по которым, используя зависимости математических формул, можно найти геодезические координаты. Однако так можно найти только высоту в геометрическом понимании, поскольку прямоугольные координаты не содержат информации о поле силы тяжести. Кроме того, из-за тропосферных влияний и методических особенностей высота и в этом случае определяется с несколько меньшей точностью, чем плановые координаты.
Что такое высота и где ее начало
Для определения положения точки, находящейся на физической поверхности Земли относительно исходной уровенной поверхности, помимо плоских координат, необходима третья координата — высота Н.
Высота – это измерение объекта или его местоположения, отмеряемое в вертикальном направлении. Высота в любой точки земной поверхности отсчитывается от разных поверхностей, таких как геоид, квазигеоид или референц-эллипсоид.
Геоид, квазигеоид и эллипсоид вращения
Геоид — это образованная основной уровенной поверхностью замкнутая фигура принимаемая за обобщенную поверхность Земли. Поверхность геоида является одной из уровенных поверхностей потенциала силы тяжести. Эта поверхность, мысленно продолженная под материками, образует замкнутую фигуру, которую принимают за сглаженную фигуру Земли. Часто под геоидом понимают уровенную поверхность, проходящую через некоторую фиксированную точку земной поверхности у берега моря. Понятие о геоиде сложилось в результате длительного развития представлений о фигуре Земли как планеты, а самый термин «геоид» предложен И. Листингом в 1873 г. От геоида отсчитывают абсолютные высоты. По современным данным, средняя величина отступления геоида от наиболее удачно подобранного эллипсоида составляет около ±50 м, а максимальное отступление не превышает ±100 м. Высота геоида в сумме с ортометрической высотой определяет высоту Н соответственной точки над земным эллипсоидом. Поскольку распределение плотности внутри Земли с необходимой точностью неизвестно, высоту Н в геодезической гравиметрии и геодезии, согласно предложению М. С. Молоденского, определяют как сумму нормальной высоты и высоты квазигеоида. Для точного определения поверхности геоида какой-либо точки необходимо выполнить комплекс измерений, непосредственно на поверхности геоида. Что практически не возможно, либо в соответствующей точке на физической поверхности Земли с учетом распределения масс в этом месте, что также не предоставляется возможным. По этой причине было предложено вместо поверхности геоида использовать квазигеоид.
Квазигеоид — это поверхность близкая к поверхности геоида, определяемая только по результатам измерений на земной поверхности без привлечения данных по распределению масс. Поверхность квазигеоида определена значениями потенциала силы тяжести на земной поверхности, и для изучения квазигеоида результаты измерений не нужно редуцировать внутрь притягивающей массы. Квазигеоид отступает от геоида в высоких горах на 2–4 м, на низменных равнинах — на 0,02-0,12 м, на морях и океанах поверхности геоида и квазигеоида совпадают.
Фигуру квазигеоида определяют методом астрономо-гравиметрического нивелирования или через предварительное определение возмущающего потенциала по материалам наземных гравиметрических съёмок и наблюдений за движением искусственных спутников Земли. Последние данные необходимы в связи с недостаточной гравиметрической изученностью некоторых областей Земли Поверхность геоида, из-за ее сложности, математически никак не выражается, поэтому на ней нельзя решать геодезические задачи. Для решения таких задач взамен поверхности геоида принимают поверхность эллипсоида вращения.
Эллипсоида вращения — это близкая по форме к геоиду поверхность, но математически правильная, на которую можно перенести результаты измерений, выполненных на физической поверхности Земли. Эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид). Для России принят референц-эллипсоид Крассовского форма и размеры которого были вычислены советским геодезистом А. А. Изотовым, и который в 1940 году назван именем Ф. Н. Красовского.
Высота точки местности в географии, топографии и геодезии может измеряться от разных уровней отсчёта:
1. Абсолютная высота отсчитывается от уровня моря или геоида (линия НА и линия НВ);
2. Относительная высота (превышение) отсчитывается от какого-либо условного уровня (линия НС);
3. Геодезическая (эллипсоидальная) высота — высота относительно эллипсоида вращения.
Абсолютная и относительная высоты
В нашей стране с 1946 г. счет абсолютных высот ведется от нуля Кронштадтского футштока соответствующего среднему уровню Балтийского моря в спокойном его состоянии (Балтийская система высот). Вся нивелирная сеть на территорию России опирается на один исходный пункт, не имеет внешнего контроля и уравнивается как свободная система. В середине 1980-х в связи с предстоящим строительством гидротехнического комплекса защиты Ленинграда (ныне Санкт-Петербурга) от наводнений были созданы дублеры в Кронштадте и г. Ломоносове (на основе репера № 6521 и маяка Шепелевский)
Высоты, отсчитанные от иной уровенной поверхности, называются относительными на рисунке изображены линией НС. При съемке небольших участков, при обмерных работах, а также на стройплощадке часто применяют относительную или условную систему отсчета высот.
Что такое превышение
Численное значение высоты точки называется отметкой точки. Разность высот двух точек, называется превышением. Превышение h точки В над точкой А, равное разности высот точек А и В, определяется как h = НВ – НА. Зная высоту точки А, для определения высоты точки В на местности измеряют превышение hAB. Высоту точки В вычисляют по формуле HВ = HA + hAB. Измерение превышений и последующее вычисление высот точек называется нивелированием.
Геодезическая высота
Геодезической (эллипсоида́льной) высотой некоторой точки физической поверхности земли называется отрезок нормали к эллипсоиду от его поверхности до данной точки. Вместе с геодезическими широтой и долготой (B и L соответственно) она определяет положение точки относительно заданного эллипсоида. Физически эллипсоида не существует, следовательно геодезическая высота не может быть непосредственно измерена наземными методами. Определить её возможно с помощью спутниковых измерений, а также посредством обработки рядов триангуляции, астрономо-геодезического нивелирования.
Как видно из определения геодезическая высота зависит от расположения и параметров выбранного эллипсоида, поэтому геодезическую высоту разделяют на две части. Одна из них характеризует физическую поверхность Земли относительно уровенной поверхности (информацию о ней получают в большей степени нивелированием), вторая, более гладкая, характеризует отличие отсчётного эллипсоида от геоида. Первую часть называют гипсометрической, а вторую — гладкой или геоидальной частью. Уровенная поверхность имеет несравненно более плавную форму в сравнении с физической, следовательно геоидальная часть меняется гораздо медленнее гипсометрической.
Системы геодезических высот
Ортометрическая высота точки — это расстояние (H) вдоль отвесной линии от точки до поверхности геоида. Ортометрическая высота для практических целей является «высотой над уровнем моря». Чтобы вычислить значение ортометрической высоты, нужно знать плотность пород вдоль силовой линии или измерять силу тяжести внутри Земли. Поэтому ортометрическую высоту нельзя найти по измерениям только на поверхности Земли. Альтернативой ортометрической высоте являются нормальная высота. Ортометрические высоты по Гельмерту используют многие европейские страны, Турция и страны Американского континента. Поскольку гравитация не является постоянной на больших площадях, ортометрическая высота также не является постоянной. Так на территории США гравитация на 0,1% сильнее на севере Соединенных Штатов, чем на юге, поэтому ровная поверхность, имеющая ортометрическую высоту в 1000 метров в Монтане, будет иметь высоту в 1001 метр в Техасе.
Нормальные высоты — это высоты от поверхности квазигеоида, один из нескольких типов высоты. Нормальная высота точки вычисляется из геопотенциальных чисел путем деления геопотенциального числа точки, т. е. ее разности геопотенциалов с уровнем моря, на среднюю нормальную гравитацию, вычисленную вдоль отвеса точки. (Точнее, вдоль эллипсоидной нормали, усредняя по диапазону высот от 0-эллипсоид-H*; процедура, таким образом, рекурсивна. Нормальные высоты, таким образом, зависят от выбранного опорного эллипсоида. Система нормальных высот принята в России, странах СНГ и некоторых европейских странах (Швеция, Германия, Франция и др.). Нормальные значения гравитации можно вычислить через плотность земной коры вокруг отвеса. Нормальные высоты занимают видное место в теории гравитационного поля Земли, разработанной школой М. С. Молоденского. Эталонная поверхность, с которой измеряются нормальные высоты, называется квазигеоидом, представляющим собой «средний уровень моря», аналогичный геоиду и близкий к нему, но лишенный физической интерпретации эквипотенциальной поверхности. В геодезии (топографии) нормальную высоту называют абсолютной, а разность нормальных высот — относительной высотой. Численное значение абсолютной высоты принято называть отметкой.
Геопотенциальное число ― это та работа, которую нужно совершить, чтобы подняться от уровня моря до точки Р поверхности Земли.
Динамическая высота — это геопотенциальное число, переведенное в линейную меру, получить его можно разделив геопотенциальное число на любое постоянное значение С силы тяжести. Выбирая в качестве С разные значения постоянной, можно построить разные системы динамических высот. Динамические вы соты были введены К.Ф.Гауссом, который предложил рассматривать высоты как геопотенциальные числа, т.е. принять С = 1. Динамическая высота постоянна, если следовать одному и тому же гравитационному потенциалу, когда они перемещаются с места на место. Из-за изменения силы тяжести поверхности, имеющие постоянную разницу в динамической высоте, могут быть ближе или дальше друг от друга в различных местах. Динамические высоты обычно выбираются так, чтобы они имели сопряжения с геоидом. Когда оптическое выравнивание выполнено, путь близко соответствует следующему значению динамической высоты по горизонтали, но не ортометрической высоте для вертикальных изменений, измеренных на выравнивающем стержне. Таким образом, небольшие поправки должны быть применены к полевым измерениям, чтобы получить либо динамическую высоту, либо ортометрическую высоту, обычно используемую в технике. Паспорта данных Национальной Геодезической службы США дают как динамические, так и ортометрические значения. Динамическая высота может быть вычислена с использованием нормальной силы тяжести на 45-градусной широте и геопотенциального числа местоположений.