Что такое гироскопический датчик
Как работает гироскоп в телефоне
Мы редко задумываемся о том, чем напичкан наш смартфон. Раньше мы использовали его только для звонков и SMS, теперь же смартфоны стали меньше и быстрее ноутбуков и компьютеров. Современные смартфоны богаты на самые разные сенсоры и умные датчики, которые помогают пользоваться нам самыми простыми функциями. Датчики и сенсоры очень чувствительны к внешним изменениям. Поворачиваете смартфон горизонтально, а экран ориентируется вместе с вами? Значит, стоит поблагодарить гироскоп, установленный в вашем устройстве. Кстати, благодаря гироскопу существует VR и все, что с этим связано. Рассказываем, как работает гироскоп, зачем он нужен, как его откалибровать на Android, чем отличается гироскоп от акселерометра.
Рассказываем, как работает гироскоп в смартфоне
Что такое гироскоп
Гироскоп — это устройство, которое помогает определить положение тела в пространстве. Изобретен он был достаточно давно, еще в 1817 году, а повсеместное применение находит до сих пор. Аналоговый гироскоп состоит из вращающегося вокруг вертикальной оси ротора-волчка, которая меняет положение в пространстве, а скорость вращения волчка превышает скорость поворота оси его вращения. Из-за этого волчок сохраняет свое положение независимо от сил, действующих извне. Для точного определения положения в пространстве такие нехитрые приборы используются в самолетах, ракетах, квадрокоптерах, планшетах и смартфонах.
Как работает гироскоп в смартфоне
Так выглядит гироскоп смартфона
Гироскоп в смартфонах и других умных устройствах сильно отличается от обычных, хоть и выполняет ту же функцию. Механическая энергия в нем преобразуется в электрическую, что формируется в в алгоритм работы. В умных устройствах гироскоп представляет собой подвижные вещества, которые смещаются под наклоном, меняя электрическую емкость конденсаторов, связанную с процессором вашего смартфона. Самый просто вариант гироскопа выглядит как две подвижные единицы, которые меняют положение и посылают сигнал датчикам. При повороте устройства двигается и весь гироскоп, который посылает сигнал об изменившемся местоположении. Благодаря этому нехитрому устройству вы можете встряхивать смартфон и переворачивать, чтобы работали интересные фичи, встроенные в операционную систему вашего смартфона. Если вы планируете пользоваться устройством с VR, например, очками или шлемом, то гироскоп будет играть в этом важную роль, отслеживая повороты головы и направляя виртуальный взгляд именно туда, куда направлен ваш взор. Что еще интересного скрывает VR? Читайте наши материалы в Яндекс.Дзен — пишем то, о чем еще никто не знает!
Чем гироскоп отличается от акселерометра
Акселерометр помогает в играх на смартфоне
Если вы любите иногда играть на смартфоне, то эти два датчика делают вашу жизнь гораздо проще. Они оба предназначены для того, чтобы определять положение гаджета в пространстве. Если гироскоп высчитывает угол наклона вашего смартфона относительно поверхности, передавая информацию в операционную систему, то акселерометр очень точно вычисляет ускорение. Именно поэтому наши смартфоны неплохо справляются с функцией шагомеров. Данные будут плюс-минус точными: можете попробовать сравнить их с данными ваших умных часов или фитнес-браслета, отличия будут незначительными. В современных смартфонах устанавливают и гироскоп, и акселерометр, что помогает избежать случайных поворотов экрана при его перемещении. Что еще интересного хотите узнать о смартфоне? Пишите нам в Telegram-чате!
Как проверить гироскоп в смартфоне
С помощью видео в 360 можно проверить работоспособность смартфона
Все современные смартфоны оборудованы этими датчиками. Но если вам интересен принцип их работы, то есть отличный способ.
Проверить наличие и работоспособность устройств можно также в приложении AIDA64. Устанавливаете приложение и получаете информацию в разделе «Датчики» обо всех установленных комплектующих в вашем смартфоне.
Как откалибровать гироскоп на Android
Гироскоп — это самостоятельный датчик, который невозможно настроить самостоятельно. Он есть во всех смартфонах и включить/отключить его нельзя, он всегда работает. В этой ситуации возможно лишь настроить или откалибровать акселерометр. Например, включить или выключить функцию поворота экрана.
Функция «Автоповорот экрана» помогает избежать случайной смены ориентации экрана
Для калибровки акселерометра используется стороннее приложение Accelerometer Calibration. Мобильное устройство кладется на ровную поверхность, а когда показывающий равновесие шарик окажется в прицеле, надо нажать кнопку «Calibrate».
Гироскоп — это один из важнейших датчиков наряду с датчиком освещенности. Он помогает пользоваться навигацией, меняя положение телефона. Без него не работал бы автоповорот экрана,
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
Мы в редакции AndroidInsider.ru часто обсуждаем неочевидные ситуации. На этот раз я предложил ребятам решить, что же делать, если девушка залезет в телефон. Вот представьте: заходите домой, а девушка уже стоит, держа в руках в ваш телефон. Что было дальше? Мои коллеги замолчали и погрузились в раздумья. Ситуация действительно сложная: допустим, что скрывать вам нечего, но вторые половинки часто воспринимают информацию сквозь призму эмоций, не пытаясь разобраться, что к чему. Страшно, очень страшно: но если у вас не получилось объяснить девушке, что ей нечего делать в вашем смартфоне, то от вторжения определенно стоит защититься. Давайте досканально разберемся, как действовать в такой непростой ситуации и какие меры предпринять.
Накануне Хелоуина просто рука не поворачивается сделать подборку игр, которые не связаны с этим днем. Мы постоянно рассказываем об играх, собирая их по жанрам или другим параметрам. У нас были гонки, RPG, игры про охоту, про гангстеров, спортивные игры и гоночные симуляторы. На этот раз приведем подборку самых страшных игр, которые есть в Google Play. Это то, что относится к жанру хоррор. В подборке будут как новые игры, так и проверенные хиты, которые бороздили просторы Google Play еще несколько лет назад. Так что выбирайте во что поиграть и давайте проведем эти выходные на соответствующей волне. А если хотите чего-то более спокойного, в статье будут ссылки на другие подборки игр.
Как это работает: гироскоп
Привет всем, уважаемые пользователи лучшего мобильного портала Trashbox. Сегодняшняя шестая по счёту статья из рубрики «Как это работает» посвящается гироскопу. Если вам не известно, что это такое — данная статья для вас. Давайте же узнаем, что такое гироскоп и как это работает. Самое интересное под катом.
Содержание
Гироскоп (в переводе значит «вращение» или «смотреть») — устройство, имеющее способность измерения изменения углов ориентации связанного с ним тела относительно инерциальной системы координат. В настоящее время известно два типа гироскопов: механический и оптический. По режиму действия гироскопы делятся на: датчики угловой скорости и указатели направления. Однако, одно устройство может работать одновременно в разных режимах в зависимости от типа управления.
Что касается механических гироскопов, то из них больше всех известен роторный гироскоп — это твёрдое тело, которое быстро вращается и ось которого способна изменять ориентацию в пространстве. Скорость вращения гироскопа при этом существенно превышает скорость поворота оси его вращения. Основным свойством данного гироскопа является способность сохранения в пространстве неизменного направления оси вращения при отсутствии какого-либо воздействия на неё внешних сил. Основная часть роторного гироскопа — быстро-вращающийся ротор, имеющий несколько степеней свободы (осей возможного вращения).
Принцип работы
Принцип работы гироскопа заключается в грузиках, которые вибрируют на плоскости с частотой скорости умноженной на перемещение. При повороте гироскопа возникает так называемое Кориолисово ускорение. Если вы пропускали физику в школе или не знаете, то у всех тел есть единое свойство — при вращении они сохраняют свою ориентацию относительно направления силы тяжести. По сути, гироскоп — это волчок, который вращается вокруг вертикальной оси, закреплённый в раме, которая способна поворачиваться вокруг горизонтальной оси, и в свою очередь закреплена в другой раме, которая может поворачиваться вокруг третьей оси. Таким образом, можно придти к выводу: как бы мы не поворачивали волчок, он всегда имеет возможность всё равно находиться в вертикальном положении. Датчики снимают сигнал, как волчок ориентирован относительно рам, а процессор считывает, как рамы в этом случае должны быть расположены относительно силы тяжести.
Гироскопы применяются в технике. Они используются в виде компонентов как в системах навигации (авиагоризонт, гирокомпас и т. п.), так и в системах ориентации и стабилизации космических аппаратов. Что касается той самой системы стабилизации, то она бывает трёх типов: система силовой стабилизации (используется на двухстепенных гироскопах), система индикаторно-силовой стабилизации (также на двухстепенных гироскопах) и система индикаторной стабилизации (на трёхстепенных гироскопах).
А теперь поподробнее об этих трёх основных типах. Система силовой стабилизации: для стабилизации вокруг каждой оси требуется один гироскоп. Сама стабилизация осуществляется непосредственно гироскопом, а также двигателем разгрузки. В начале действует гироскопический момент, а потом уже подключается двигатель разгрузки. Система индикаторно-силовой стабилизации: для стабилизации также требуется один гироскоп. Стабилизация осуществляется только двигателями разгрузки, но в начале появляется небольшой гироскопический момент. И последняя — система индикаторной стабилизации: для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.
Использование гироскопа в мобильных устройствах
Давайте же затронем тему использования гироскопа в мобильных устройствах и игровых приставках. В настоящее время в большинстве смартфонов используется так называемый МЭМС-акселерометр. Будучи датчиком ускорения, в покойном состоянии он видит только один вектор — вектор всемирной силы тяготения, который всегда направлен к центру Земли. По разложениям вектора на чувствительные оси датчика без каких-либо затруднений вычисляется угловое положение устройства в пространстве. Также разложение вектора может показать, что датчик неспособен определить разворот устройства по углу курса, то есть поворот влево или вправо при поставленном на ребро смартфоне — проекция вектора на курс всегда равняется нулю. Впервые игровой контроллер, умеющий определять своё положение в пространстве, был выпущен компанией Nintendo — Wii Remote для игровой приставки Wii, и в нём используется только трёхмерный акселерометр.
Кроме того, гироскоп стал применяться и в игровых контроллерах. Например, Sixaxis для SONY PlayStation третьего поколения и Wii MotionPlus для Nintendo Wii. В обоих игровых контроллерах используются два дополняющих друг друга пространственных сенсора: гироскоп, а также акселерометр. Также в новейших контроллерах, кроме акселерометра, используется дополнительный пространственный сенсор — гироскоп. Если привести работу гироскопа в других вещах, то существуют игрушки на основе гироскопа. Самыми банальными примерами являются йо-йо и волчок или в народе его называют «юла». Волчки же отличаются от гироскопов тем, что не имеют ни одной неподвижной точки.
В других сферах также есть применение гироскопу — их целый список. Гироскоп используется в приборах навигации в самолётах и космических аппаратах, в оружии (пуля при стрельбе закручивается, это придаёт ей гораздо большую устойчивость и повышает точность стрельбы), колёса велосипеда или подобного устройства работают как гироскопы — это не даёт ездоку упасть. Таким образом, любой вращающийся предмет можно назвать гироскопом — он противодействует отклонению оси вращения.
Как устроен гироскоп: суть, принцип работы, где применяется
Однажды я наблюдал разговор двух друзей, точнее подруг:
А: О, знаешь, у меня новый смартфон, в нем есть даже встроенный гироскоп
Б: Аа, да, я тоже скачала себе, поставила гироскоп на месяц
А: Эмм, ты точно уверена, что это гироскоп?
Б: Да, гироскоп для всех знаков зодиака.
Чтобы таких диалогов в мире стало чуть меньше, предлагаем узнать, что такое гироскоп и как он работает.
Гироскоп: история, определение
Гироскоп – прибор, имеющий свободную ось вращения и способный реагировать на изменение углов ориентации тела, на котором он установлен. При вращении гироскоп сохраняет свое положение неизменным.
Само слово происходит от греческих gyreuо – вращаться и skopeo – смотреть, наблюдать. Впервые термин гироскоп был введен Жаном Фуко в 1852 году, но изобрели прибор раньше. Это сделал немецкий астроном Иоганн Боненбергер в 1817 году.
Гироскопы представляют собой вращающиеся с высокой частотой твердые тела. Ось вращения гироскопа может изменять свое направление в пространстве. Свойствами гироскопа обладают вращающиеся артиллерийские снаряды, винты самолетов, роторы турбин.
Простейший пример гироскопа – волчок или хорошо всем известная детская игрушка юла. Тело, вращающееся вокруг определенной оси, которая сохраняет положение в пространстве, если на гироскоп не действуют какие-то внешние силы и моменты этих сил. При этом гироскоп обладает устойчивостью и способен противостоять воздействию внешней силы, что во многом определяется его скоростью вращения.
Например, если мы быстро раскрутим юлу, а потом толкнем ее, она не упадет, а продолжит вращение. А когда скорость волчка упадет до определенного значения, начнется прецессия – явление, когда ось вращения описывает конус, а момент импульса волчка меняет направление в пространстве.
Виды гироскопов
Существует множество видов гироскопов: двух и трехстепенные (разделение по степеням свободы или возможным осям вращения), механические, лазерные и оптические гироскопы (разделение по принципу действия).
Применение гироскопов
Благодаря своим свойствам гироскопы находят очень широкое применение. Они используются в системах стабилизации космических аппаратов, в системах навигации кораблей и самолетов, в мобильных устройствах и игровых приставках, а также в качестве тренажеров.
Интересует, как такой прибор может поместиться в современный мобильный телефон и зачем он там нужен? Дело в том, что гироскоп помогает определить положение устройства в пространстве и узнать угол отклонения. Конечно, в телефоне нет непосредственно вращающегося волчка, гироскоп представляет собой микроэлектромеханическую систему (МЭМС), содержащую микроэлектронные и микромеханические компоненты.
Как это работает на практике? Представим, что вы играете в любимую игру. Например, гонки. Чтобы повернуть руль виртуального автомобиля не нужно нажимать никаких кнопок, достаточно лишь изменить положение своего гаджета в руках.
Как видим, гироскопы – удивительные приборы, обладающие полезными свойствами. Если вам понадобится решить задачу на расчет движения гироскопа в поле внешних сил, обращайтесь к специалистам студенческого сервиса, которые помогут вам справится с ней быстро и качественно!
Как смартфоны чувствуют мир. Часть 1: акселерометры, гироскопы и другие сенсоры
Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.
История и архитектура
Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет — в 1974 году — компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.
MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.
В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.
В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен — он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.
Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.
Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung — литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы.
Результат, полученный с помощью объемной обработки
Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.
В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).
DLP-проектор BenQ использует актуаторы
Ну а теперь мы поговорим о каждом устройстве в отдельности.
Акселерометры
Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх — они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.
Nokia 5500 — первый телефон с акселерометром
Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.
Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее, в их жестких дисках. Всем известно, что винчестеры — устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.
Акселерометр InvenSense MPU-6500
По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.
В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control — и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.
Краш-тест автомобиля Opel Vectra. В 90-е годы подушки безопасности зачастую были только опцией
Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д’Аллесандро (Antonino D’Alessandro) и Джузеппе Д’Анна (Giuseppe D’Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.
Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и искомое ускорение.