Что такое глубинный репер

Глубинный репер

Полезное

Смотреть что такое «Глубинный репер» в других словарях:

глубинный репер — нивелирный репер специальной конструкции (основание которого устанавливается на плотные, динамически устойчивые грунты), служащий высотной геодезической основой для выполнения геодезических наблюдений за деформациями зданий, сооружений и земной… … Строительный словарь

Репер глубинный — Глубинный репер фундаментальный геодезический знак, закладываемый в практически несжимаемые грунты и предназначенный для сохранения высотной отметки. Источник: МДС 13 22.2009. Методическая документация в строительстве. Методика геодезического… … Официальная терминология

Репер — Геодезический знак, закрепляющий пункт нивелирной сети Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа … Словарь-справочник терминов нормативно-технической документации

Репер глубинный — Геодезический знак, основание которого устанавливается на скальные, полускальные или другие коренные практически несжимаемые грунты Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений … Словарь-справочник терминов нормативно-технической документации

репер глубинный — Геодезический знак, основание которого устанавливается на коренные, практически несжимаемые грунты. Примечание К коренным практически несжимаемым грунтам относятся: скальные, полускальные и другие. [РД 01.120.00 КТН 228 06] Тематики магистральный … Справочник технического переводчика

ГОСТ 24846-81: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: Вертикальные перемещения основания фундамента Осадки, происходящие в результате уплотнения грунта под воздействием внешних нагрузок… … Словарь-справочник терминов нормативно-технической документации

МДС 11-19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий — Терминология МДС 11 19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий: Абсолютная осадка величина осадки, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

МДС 13-22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений — Терминология МДС 13 22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений: Абсолютная (полная) осадка суммарная осадка с начала наблюдений, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

МДС 13-22.2009: Методика мониторинга технического состояния высотных и других уникальных зданий и сооружений геодезическими методами — Терминология МДС 13 22.2009: Методика мониторинга технического состояния высотных и других уникальных зданий и сооружений геодезическими методами: Абсолютная (полная) осадка суммарная осадка с начала наблюдений, полученная относительно исходной… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 24846-2012: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 2012: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: 3.14 геометрическое нивелирование: Метод определения разности высот точек при помощи геодезического прибора с горизонтальной… … Словарь-справочник терминов нормативно-технической документации

Источник

Большая Энциклопедия Нефти и Газа

Глубинный репер

Глубинные реперы устанавливают на территориях крупных парков, расположенных внутри застройки, в лесопарковых зонах и на землях сельскохозяйственного назначения. [1]

Однако перемещения глубинных реперов в ряде случаев при размещении сечения выработки в разнородных породах являются результатом не радиальных перемещений пород, а результатом деформаций краевых зон пласта у стенок выработок, изгиба кровли и выдавливания почвы. В этих случаях перемещения глубинных реперов определяются нормальной составляющей деформаций краевой зоны пласта и величинами деформаций кровли и почвы в пределах краевых зон. [2]

Поэтому для проведения работ по наблюдениям за осадкой высокого здания в начале строительства закладывают глубинные реперы ( см. рис. 67), опирающиеся основанием на твердые скальные грунты. [9]

Измерение осадки фундамента вертикальных и шаровых резервуаров должно производиться нивелированием в абсолютных отметках по глубинному реперу и реперам на фундаменте или опорах резервуара. [10]

Полезно еще отметить, что рассмотренная задача об оседании толщи горных пород открывает интересные возможности для определения параметров сжимаемости пород с помощью специального опытного водопонижения: наблюдая за деформациями сжатия отдельных слоев по глубинным реперам и зная понижения напоров, т.е. дополнительные нагрузки на породы этих слоев, легко найти их коэффициенты сжимаемости. Точность такого определения оказывается несравненно выше, чем при лабораторных опытах, в частности, вследствие устранения масштабных эффектов. [13]

При наличии макропористых грунтов наблюдения за осадкой фундаментов ведут каждые 3 мес. Наблюдения ведутся с устройством глубинного репера на территории электростанции или подстанции и с установкой на фундаментах в двух точках по углам стенных реперов. Осадку фундаментов замеряют с применением точной нивелировки. [14]

Однако перемещения глубинных реперов в ряде случаев при размещении сечения выработки в разнородных породах являются результатом не радиальных перемещений пород, а результатом деформаций краевых зон пласта у стенок выработок, изгиба кровли и выдавливания почвы. В этих случаях перемещения глубинных реперов определяются нормальной составляющей деформаций краевой зоны пласта и величинами деформаций кровли и почвы в пределах краевых зон. [15]

Источник

Репер глубинный

Геодезический знак, основание которого устанавливается на скальные, полускальные или другие коренные практически несжимаемые грунты

3.7 репер глубинный: Геодезический глубинный знак, опирающийся на скальные, полускальные или другие коренные практически несжимаемые грунты.

Полезное

Смотреть что такое «Репер глубинный» в других словарях:

репер глубинный — Геодезический знак, основание которого устанавливается на коренные, практически несжимаемые грунты. Примечание К коренным практически несжимаемым грунтам относятся: скальные, полускальные и другие. [РД 01.120.00 КТН 228 06] Тематики магистральный … Справочник технического переводчика

Репер глубинный — Глубинный репер фундаментальный геодезический знак, закладываемый в практически несжимаемые грунты и предназначенный для сохранения высотной отметки. Источник: МДС 13 22.2009. Методическая документация в строительстве. Методика геодезического… … Официальная терминология

Репер — Геодезический знак, закрепляющий пункт нивелирной сети Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа … Словарь-справочник терминов нормативно-технической документации

Глубинный репер — фундаментальный геодезический знак, закладываемый в практически несжимаемые грунты и предназначенный для сохранения высотной отметки. Глубина и местоположение глубинного репера устанавливаются проектной организацией и показываются на ППГР.… … Словарь-справочник терминов нормативно-технической документации

глубинный репер — нивелирный репер специальной конструкции (основание которого устанавливается на плотные, динамически устойчивые грунты), служащий высотной геодезической основой для выполнения геодезических наблюдений за деформациями зданий, сооружений и земной… … Строительный словарь

ГОСТ 24846-2012: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 2012: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: 3.14 геометрическое нивелирование: Метод определения разности высот точек при помощи геодезического прибора с горизонтальной… … Словарь-справочник терминов нормативно-технической документации

РД 07-166-97: Инструкция по наблюдениям за сдвижениями земной поверхности и расположенными на ней объектами при строительстве в Москве подземных сооружений — Терминология РД 07 166 97: Инструкция по наблюдениям за сдвижениями земной поверхности и расположенными на ней объектами при строительстве в Москве подземных сооружений: 2.1. Абсолютная величина горизонтального сдвижения земной поверхности (на… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 24846-81: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: Вертикальные перемещения основания фундамента Осадки, происходящие в результате уплотнения грунта под воздействием внешних нагрузок… … Словарь-справочник терминов нормативно-технической документации

МДС 11-19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий — Терминология МДС 11 19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий: Абсолютная осадка величина осадки, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

МДС 13-22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений — Терминология МДС 13 22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений: Абсолютная (полная) осадка суммарная осадка с начала наблюдений, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

Источник

Размещение и конструкция исходных и деформационных знаков

Геодезический мониторинг – это работы по наблюдению за техническим состоянием объекта и прилегающей территории, выявление деформаций, определение динамики отклонений и прогнозирование дальнейшего развития процессов. Главная задача мониторинга заключается в предотвращении аварийных ситуаций, в увеличении срока службы объекта и поддержание его в устойчивом состоянии.

Для измерений горизонтальных или вертикальных перемещений зданий и сооружений в конструкциях последних, закрепляют геодезические знаки, так называемые деформационные марки. Фиксируя изменение пространственного положения деформационных марок, судят о горизонтальных или вертикальных перемещениях сооружения или его частей.

Измерения перемещений производится относительно других геодезических знаков, знаков основы, которые закрепляются вдали от зон возможных деформаций. Их пространственное положение контролируется и считается незыблемым.
Геодезические знаки основы могут быть высотными, плановыми или совмещёнными, несущими информацию о плановых координатах и о высоте одновременно.

Исходные или опорные знаки высотной основы ещё называют реперами.
Реперы могут быть глубинными (незаиляемыми трубчатыми, свайными и др.), фундаментальными (железобетонными, скальными, трубчатыми и др.), грунтовыми или рабочими (бетонными, трубчатыми и др.) и стенными из литья или изготовленными в мастерских.

Высотные деформационные марки

Высотные деформационные марки (рис. 10.1) иногда называют осадочными.
Их закладывают в стены и фундаменты зданий, промышленных, гидротехнических и других сооружений. Они могут иметь различную конструкцию, но должны быть жёстко связаны с конструктивными элементами сооружения, быть достаточно эстетичными и не уродовать фасады зданий и сооружений, но в то же время должны иметь антивандальную защиту.
В простейшем исполнении осадочная марка представляет собой отрезок уголковой стали или арматуры около 15 см длины при закладке в каменные фундаменты.
При закладке марок на стальных конструкциях их длину и место крепления подбирают с учётом удобства установки нивелирной рейки.

При высокоточных наблюдениях используют более сложные конструкции марок закрытого типа с потайным (в виде втулки) креплением ответственной её части. Нивелирные рейки заменяют шкаловыми марками, имеющими такую же оцифровку, что и инварная полоса.

Для наблюдений за осадками в основаниях земляных и бетонных сооружений используют так называемые глубинные деформационные марки, которые могут быть трубчатыми, металлическими или железобетонными плитами-марками и др.
Для измерения осадок и просадок грунтов дневной поверхности используют поверхностные марки.
Марка для измерения осадок отдельных слоёв пород, залегающих непосредственно под сооружением, представляет собой штангу, верхний конец которой имеет полусферическую головку, а нижний – башмак в виде опорного диска с арматурными шипами.

Проектирование мест расположения деформационных марок и опорных геодезических знаков и их закладка являются одним из основных и ответственных этапов всего комплекса работ по измерениям вертикальных и горизонтальных перемещений исследуемых сооружений. От того, насколько рационально размещены знаки, от их оправданного количества во многом зависит качество, полнота и информативность результатов измерений. Поэтому места расположения знаков согласовываются с проектировщиками, строителями, геологами и другими специалистами генплана проектной организации.

Проект размещения марок на сооружении (рис. 10.2) составляют с учётом конструкции фундамента, нагрузки на отдельные части основания, геологических и гидрологических условий площадки. Деформационные марки устанавливают примерно на одной высоте в нижней части несущих конструкций через 10–15 м по всему периметру сооружения. Марки устанавливают также внутри сооружения, на углах и стыках строительных блоков, по обе стороны осадочных или температурных швов, в местах примыкания продольных и поперечных стен, на несущих колоннах, вокруг зон с большими динамическими нагрузками и т.п.

Деформационные знаки, служащие для контроля плановых перемещений объекта, имеют различную конструкцию в зависимости от способа измерений плановых деформаций. Так, если измерения выполняются электронным тахеометром способом полярных координат, то в качестве деформационных знаков могут быть использованы марки из светоотражательной плёнки (катафоты). Эти марочки приклеивают в характерных точках исследуемого объекта так, чтобы их отражающая поверхность была направлена на опорный знак, где устанавливается прибор.

Если плановое положение деформационного знака определяется из угловых измерений, то знак выполняется в виде обычной визирной марки. Визирные марки могут быть закреплены на объекте постоянно или центрироваться над точками в процессе измерений.
Места расположения деформационных знаков проектируют на планах и разрезах фундаментов, каждой марке присваивают номер.
Исходные или опорные геодезические знаки, служащие для измерений вертикальных перемещений, как отмечено ранее, подразделяются на:
• глубинные фундаментальные реперы, закладываемые в коренные, стабильные породы;
• грунтовые реперы, закладываемые ниже глубины промерзания грунта;
• стенные реперы – знаки, заложенные в стенах капитальных зданий и сооружений, осадку фундаментов которых можно считать практически завершённой.

Глубинные реперы

Глубинные реперы (рис. 10.3) могут быть металлическими, биметаллическими, биструнными и другими. Основания глубинных реперов закрепляются в коренных скальных и других практически несжимаемых грунтах на глубину от 2 до нескольких десятков метров.

Основные конструктивные элементы глубинного репера – это реперная труба, реперная головка, защитная труба, колодец с люком и сальник из смолистых веществ.
Реперная труба состоит из стальных газовых или буровых труб диаметром около 90 мм. Для длительной сохранности трубу заполняют битумом или цементным раствором.

В верхний конец трубы ввинчивается или приваривается реперная головка из бронзы или нержавеющей стали.
Защитная труба предохраняет реперную трубу от возможных смещений, вызываемых сжатием или набуханием окружающего грунта. На защитную трубу надевается крышка.
Колодец предохраняет верхнюю часть репера от смещения вследствие температурных изменений, случайных повреждений или пучения грунтов от промерзания.

Сальник выполняется из стального цилиндра, заполняется тяжёлыми смазочными материалами или битумом и служит препятствием для проникновения ила в пространство между трубами.
Главным требованием, предъявляемым к глубинным фундаментальным реперам, является их высотная устойчивость на весь период наблюдений за деформациями.

Для производства измерений II, III и IV классов точности разрабатываются конструкции грунтовых реперов, которые закладываются ниже глубины сезонного промерзания грунта, а также стенные реперы, устанавливаемые на несущих конструкциях зданий и сооружений, осадки фундаментов которых практически стабилизировались.

Грунтовые реперы

Грунтовые реперы (рис. 10.4) устанавливаются в котлованах, скважинах или путём забивки и могут быть металлическими, железобетонными и трубчатыми.
Число исходных грунтовых реперов должно быть не менее трёх, а стенных реперов – не менее четырёх. Грунтовые реперы должны располагаться в стороне от проездов, подземных коммуникаций, вне зоны распространения давления от исследуемых сооружений, вне пределов влияния осадочных явлений оползневых склонов, подземных выработок, карстовых образований, на расстоянии, исключающем влияние вибрации от транспортных средств, машин и механизмов. Реперы рекомендуются располагать на газонах, в скверах, в местах, где отсутствуют подземные коммуникации. Якоря реперов закладываются на 1 м ниже уровня промерзания грунтов.

При закладке в стенах и фундаментах зданий стенных реперов (рис. 10.5) необходимо руководствоваться следующим:
• здания должны быть капитальными, построены за несколько лет до закладки знаков в местах, не подверженных оползневым явлениям и пучению;
• при осмотре зданий необходимо убедиться в отсутствии видимых деформаций стен;
• не допускается производить закладку стенных реперов в сооружениях, предназначенных к сносу или капитальному ремонту, расположенных среди железнодорожных путей или содержащих работающие станки и механизмы.

Закладка реперов возможна в любое время года, а использование допускается не ранее 10 дней после окончания работ по их устройству.
В целом относительно опорных высотных знаков следует сказать, что их конструкция определяется проектной организацией исходя из поставленных задач, условий района работ, свойств грунтов и их гидрогеологического режима. Перечисленные параметры весьма разнообразны, также многообразны и конструкции опорных знаков.

Надёжность результатов наблюдений за осадками в значительной степени зависит от стабильности высотного положения исходных реперов. Для контроля исходную высотную основу создают из нескольких реперов (не менее трёх), расположенных кустом или равномерно по всей площади объекта. Наблюдения за взаимным положением нескольких реперов позволяют судить о степени устойчивости каждого и наиболее устойчивый выбрать в качестве исходного.
Анализ устойчивости реперов и выбор исходного должны производиться в каждом цикле наблюдений, но с привлечением результатов предыдущих циклов для большей представительности статистического материала.

Все известные способы оценки устойчивости реперов условно можно разделить на две группы. В основе первой группы лежит принцип неизменной отметки одного из наиболее устойчивых реперов, в основе второй – принцип неизменной средней отметки всех реперов сети или группы наиболее устойчивых.

Идея анализа устойчивости, присущая способам первой группы, заключается в том, что в текущем цикле наблюдений каждый из реперов сети последовательно принимается за исходный, и относительно него вычисляются вертикальные смещения других реперов. Репер, для которого сумма смещений или среднее смещение минимально, принимается за неподвижный. При наличии многочисленных наблюдений используются статистические методы анализа.
Для способов второй группы характерна оценка устойчивости по изменению высотного положения реперов относительно средней отметки, вычисленной в текущем цикле по отметкам n реперов исходной основы:

Плановые знаки

Плановые знаки, используемые для определения горизонтальных смещений и сдвигов сооружений так же, как и высотные подразделяются на:
— деформационные, или контрольные, закладываемые на исследуемом сооружении (в тело плотины, здания и т.п.) или в толщу оползневого участка земли, что позволяет по его пространственным перемещениям судить о смещениях всего исследуемого объекта;
— опорные, или наблюдательные столбы, закладываемые вблизи исследуемого объекта, с которых непосредственно производятся измерения смещений деформационных знаков;
— исходные, закладываемые за пределами зоны возможных деформаций, служащие для определения смещений опорных и, по необходимости, деформационных знаков.

Опорные знаки устанавливаются в стороне от сооружения в скальных или коренных породах и служат для контрольных измерений стабильности положения наблюдательных столбов и деформационных знаков.
Опорные знаки и наблюдательные столбы могут быть выполнены в виде металлических труб, заглублённых ниже уровня промерзания грунтов (рис. 10.6).

В большинстве случаев знаки предназначены для высокоточных измерений, поэтому в их конструкциях предусмотрены устройства для принудительного механического центрирования марки, тахеометра или теодолита.
При наблюдениях с таких знаков прибор (теодолит, тахеометр) устанавливается на центрировочное устройство знака. Наиболее точное центрировочное устройство представляет собой плиту с калиброванной втулкой. В этом случае измерительный прибор (теодолит, электронный тахеометр, сканер или створный прибор) в своём основании на подставке должен иметь калиброванный шар для посадки во втулку. Принятый по умолчанию диаметр втулки и шара – 1 дюйм.

В оживлённых местах в качестве опорных плановых знаков используют скрытые трубчатые знаки, закладываемые способом бурения в стороне от транспортных магистралей в удобном отдалении от наблюдаемого объекта, на тротуарах или в скверах (рис. 10.7).

Если сеть знаков плановой основы создаётся с целью наблюдений за креном сооружения, то знаки располагают в местах, обеспечивающих стабильность их положения и максимальную сохранность на удалении порядка двух-трёх высот от сооружения.
Технические требования к построению опорной геодезической сети должны соответствовать положениям СП 11-104 97. Точность определения планового положения опорных пунктов должна быть выше требуемой точности определения крена, или планового смещения, по крайней мере, в 1,5-2 раза.
После установки знаков плановой и высотной основы на них передаются координаты и высоты от ближайших пунктов государственной геодезической сети.

Источник

Репер глубинный

Источник:

» МДС 13-22.2009. Методическая документация в строительстве. Методика геодезического мониторинга технического состояния высотных и уникальных зданий и сооружений»

Смотреть что такое «Репер глубинный» в других словарях:

Репер глубинный — Геодезический знак, основание которого устанавливается на скальные, полускальные или другие коренные практически несжимаемые грунты Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений … Словарь-справочник терминов нормативно-технической документации

репер глубинный — Геодезический знак, основание которого устанавливается на коренные, практически несжимаемые грунты. Примечание К коренным практически несжимаемым грунтам относятся: скальные, полускальные и другие. [РД 01.120.00 КТН 228 06] Тематики магистральный … Справочник технического переводчика

Репер — Геодезический знак, закрепляющий пункт нивелирной сети Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа … Словарь-справочник терминов нормативно-технической документации

Глубинный репер — фундаментальный геодезический знак, закладываемый в практически несжимаемые грунты и предназначенный для сохранения высотной отметки. Глубина и местоположение глубинного репера устанавливаются проектной организацией и показываются на ППГР.… … Словарь-справочник терминов нормативно-технической документации

глубинный репер — нивелирный репер специальной конструкции (основание которого устанавливается на плотные, динамически устойчивые грунты), служащий высотной геодезической основой для выполнения геодезических наблюдений за деформациями зданий, сооружений и земной… … Строительный словарь

ГОСТ 24846-2012: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 2012: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: 3.14 геометрическое нивелирование: Метод определения разности высот точек при помощи геодезического прибора с горизонтальной… … Словарь-справочник терминов нормативно-технической документации

РД 07-166-97: Инструкция по наблюдениям за сдвижениями земной поверхности и расположенными на ней объектами при строительстве в Москве подземных сооружений — Терминология РД 07 166 97: Инструкция по наблюдениям за сдвижениями земной поверхности и расположенными на ней объектами при строительстве в Москве подземных сооружений: 2.1. Абсолютная величина горизонтального сдвижения земной поверхности (на… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 24846-81: Грунты. Методы измерения деформаций оснований зданий и сооружений — Терминология ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений оригинал документа: Вертикальные перемещения основания фундамента Осадки, происходящие в результате уплотнения грунта под воздействием внешних нагрузок… … Словарь-справочник терминов нормативно-технической документации

МДС 11-19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий — Терминология МДС 11 19.2009: Временные рекомендации по организации технологии геодезического обеспечения качества строительства многофункциональных высотных зданий: Абсолютная осадка величина осадки, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

МДС 13-22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений — Терминология МДС 13 22.2009: Методика геодезического мониторинга технического состояния высотных зданий и уникальных зданий и сооружений: Абсолютная (полная) осадка суммарная осадка с начала наблюдений, полученная относительно исходной высотной… … Словарь-справочник терминов нормативно-технической документации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *