Что такое градиент концентрации физиология

Что такое градиент концентрации физиология

Значение Na/K-насоса для клетки не ограничивается стабилизацией нормальных градиентов К+ и Na+ на мембране. Энергия, запасенная в мембранном градиенте Na+, часто используется для обеспечения мембранного транспорта других веществ. Например, на рис. 1.10 показан «симпорт» Na+ и молекулы сахара в клетку. Мембранный транспортный белок переносит молекулу сахара в клетку даже против градиента концентрации, в то же время Na+ движется по градиенту концентрации и потенциала, обеспечивая энергию для транспорта Сахаров. Такой транспорт Сахаров полностью зависит от существования высокого градиента натрия ; если внутриклеточная концентрация натрия существенно возрастает, то транспорт сахаров прекращается.

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиологияРис. 1.8. Соотношение между скоростью транспорта молекул и их концентрацией (в месте входа в канал или в месте связывания насоса) при диффузии через канал или при насосном транспорте. Последний при высоких концентрациях насыщается (максимальная скорость, V max); значение по оси абсцисс, соответствующее половине максимальной скорости насоса (Vmax/2), является равновесной концентрацией Кт

Для различных сахаров существуют разные симпортные системы. Транспорт аминокислот в клетку сходен с транспортом Сахаров, показанным на рис. 1.10; он также обеспечивается градиентом Na+; существует по крайней мере пять различных систем симпорта, каждая из которых специализирована для какой-либо одной группы родственных аминокислот.

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиологияРис. 1.10. Белки, погруженные в липидный бислой мембраны, опосредуют симпорт глюкозы и Na в клетку, а также Са/Na-антипорт, в котором движущей силой является градиент Na на клеточной мембране

Источник

Что такое градиент концентрации физиология

• Мембранный потенциал возникает за счет электрохимического градиента, который существует по обеим сторонам мембраны, селективно проницаемой для ионов

• Величина мембранного потенциала как функции концентрации ионов рассчитывается по уравнению Нернста

• В клетке поддерживается отрицательное значение мембранного потенциала покоя. При этом внутренняя среда клетки, по сравнению с внешней, характеризуется несколько большим отрицательным зарядом

• Существование мембранного потенциала является необходимым условием генерации электрических сигналов, а также направленного транспорта ионов через мембрану

Важным свойством клеток является способность поддерживать такие внутриклеточные концентрации метаболитов, которые существенно отличаются от их содержания во внеклеточной среде. В случае ионов, различия в их концентрации по обеим сторонам мембраны приводят к различиям в электрическом заряде: внутриклеточная среда заряжена несколько более отрицательно, чем среда снаружи клетки. Совместное действие разности зарядов и концентраций проводит к возникновению электрохимического градиента. Электрохимический градиент поддерживается за счет действия селективных каналов и белков переносчиков в плазматической мембране.

Для того чтобы понять, каким образом возникает электрохимический градиент, вначале рассмотрим простой случай, когда мембрана оказывается проницаемой только для одного вида ионов. На рисунке ниже представлены два компартмента, А и В, разделенные тонкой мембраной. Эти компартменты содержат раствор КС1 разной концентрации. В растворе хлорид калия диссоциирован на гидратированные ионы К+ и Cl-. Поскольку оба компартмента содержат эквимолярные концентрации ионов, то каждый обладает нейтральным зарядом.

Если бы мембрана была непроницаема для ионов, то величина ее электрического потенциала, измеренная с помощью вольтметра, равнялась бы нулю.

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиологияСелективное передвижение ионов через мембрану вызывает изменение мембранного потенциала.

Теперь рассмотрим случай, когда мембрана проницаема только для ионов калия (например, когда в мембране находятся К+-каналы). Диффузия растворенных веществ по градиенту концентрации является энергетически выгодным процессом (выражается в виде отрицательной величины разности энергии AG). Поэтому ионы К+ будут диффундировать в сторону более низкой их концентрации, т. е. из компартмента В в компартмент А. При этом распределение заряда на мембране будет меняться. По мере накопления в компартменте А положительно заряженных ионов, возрастают силы отталкивания между ними. Эти силы затрудняют переход ионов К+ в компартмент А.

Когда в системе достигается электрохимическое равновесие, градиенты концентрации и электрических зарядов взаимно уравновешиваются, и движение ионов К+ через мембрану прекращается. При этом транспорт ионов К+ из одного компартмента сдерживается их транспортом из другого компартмента.

Однако в компартменте А содержится больше положительно заряженных ионов, чем в компартменте В. Этот избыток ионов К+ (в компартменте А) взаимодействует с избытком ионов Cl- (в компартменте В) через тонкую мембрану, в результате чего по обеим ее сторонам выстраиваются электрические заряды. Разница зарядов по обеим сторонам мембраны выражается в виде разности потенциалов и называется мембранный потенциал. Равновесный (мембранный) потенциал компартмента В по отношению к компартменту А имеет отрицательное значение.

Этот пример иллюстрирует необходимость наличия двух условий, необходимых для возникновения мембранного потенциала клетки, не равного нулю:
• различные концентрации ионов по обеим сторонам мембраны, которые приводят к разделению зарядов и
• мембрана, обладающая селективной проницаемостью по крайней мере к одному виду ионов.

Поэтому величина мембранного потенциала является функцией концентрации ионов. В состоянии равновесия эту функцию для ионов X можно выразить количественно с помощью уравнения Нернста:

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

В формировании мембранного потенциала в клетках животных, главным образом, участвуют ионы К+, Na+ и Cl-. Ионы Са2+ и Mg2+ в меньшей степени участвуют в формировании мембранного потенциала покоя. Плазматическая мембрана обладает селективной проницаемостью к перечисленным ионам (т. е. мембрана содержит ионные каналы, селективные к каждому типу ионов). Это обстоятельство, а также мембранная проницаемость (Р) для каждого иона учитывается в уравнении Гольдмана-Ходжкина-Каца, которое представляет собой расширенную форму уравнения Нернста.

Для основных ионов это уравнение выражает мембранный потенциал как функцию их проницаемости и концентрации внутри (i) и снаружи (о) клетки:

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

В отличие от большинства других К+-каналов, которым необходим сигнал для открытия, эти каналы в клетке, обладающей определенным потенциалом покоя, открыты постоянно. В покоящейся клетке также открыты несколько каналов для других ионов. Движение ионов К+ из клетки, по направлению электрохимического градиента, помогает клеточному содержимому поддерживать отрицательный заряд. Пока мы не знаем всех источников ионов калия, которые участвуют в этом процессе. В некоторых клетках, например у растений и бактерий, а также в митохондриях, мембранный потенциал покоя создается за счет градиента протонов, а не ионов К+.

Для того чтобы происходила диффузия ионов К+ из клетки через К+-каналы, их концентрация в клетке должна быть выше, чем в окружающей среде. Градиент концентрации создается в результате работы Na+/К+-АТФа-зы, которая закачивает в клетку два иона калия на каждые три иона натрия, которые этот ионный насос удаляет из клетки. Поэтому насос функционирует как генератор заряда: удаляется больше электрических зарядов, чем привносится к клетку. Таким образом, наряду с K+-каналами, лишенными воротного механизма, Na+/К+-АТФазы участвуют в создании отрицательного внутриклеточного потенциала. Если происходит инактивация Na+/K+-АТФаз, то концентрации ионов Na+ и К+ по обе стороны мембраны уравниваются. Это происходит потому, что липидный бислой очень плохо пропускает ионы. Иными словами, без прохождения первичных процессов активного транспорта с участием Na+/К+-АТФаз значение мембранного потенциала равнялось бы нулю.

Мембранный потенциал покоящейся клетки представляет собой довольно постоянную величину. Однако при связывании лигандов, механическом стрессе или при изменении электрического заряда происходит открытие специфических ионных каналов, и мембранный потенциал изменяется. Если ионные каналы находятся под контролем электрического заряда, то изменения мембранного потенциала влияют на прохождение через них ионов. Открытие и закрытие канала контролируются воротным механизмом (гейтингом). Мембранный потенциал зависит от тех ионов, для которых каналы в основном, открыты. Например, при открытии Na+- или Са2+-каналов происходит деполяризация мембраны.

С энергетической точки зрения, мембранный потенциал представляет собой некий энергетический резервуар, энергию которого можно использовать для выполнения определенной работы. По расположению отрицательно заряженных ионов в цитозоле и положительно заряженных на наружной стороне мембраны, клетка напоминает электрический конденсатор или батарею, т. е. приспособление, способное сохранять электрическую энергию и служить ее источником. Энергия высвобождается в виде ионов, мигрирующих по направлению их электрохимического градиента, и может использоваться в процессах транспорта других ионов или метаболитов против градиента концентрации.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Градиент концентрации

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

Градиент концентрации (от лат. gradi, gradu, gradus — ход, движение, течение, приближение; con — с, вместе, совместно + centrum — центр) или концентрационный градиент — это векторная физическая величина, характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией.

Определение

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

При постоянном значении градиента концентрации C на длине пути l :

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

Здесь C1 и C2 — начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Градиент концентрации может быть причиной переноса веществ, например диффузии. Диффузия осуществляется против градиента концентрации.

См. также

Литература

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

Полезное

Смотреть что такое «Градиент концентрации» в других словарях:

градиент концентрации — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN composition [concentration] gradient … Справочник технического переводчика

градиент концентрации — – разность содержания ионов K+, Na+, Ca2+ вне и внутри клетки (ионная асимметрия), что обеспечивает образование мембранного потенциала и регуляцию биоэффектов внутри клеток. Общая химия : учебник / А. В. Жолнин [1] … Химические термины

градиент концентрации — koncentracijos gradientas statusas T sritis fizika atitikmenys: angl. concentration gradient vok. Konzentrationsgradient, m rus. градиент концентрации, m pranc. gradient de la concentration, m … Fizikos terminų žodynas

градиент концентрации примеси — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN impurity gradient … Справочник технического переводчика

относительный градиент концентрации космических лучей — относительный градиент концентрации Вектор, направленный в сторону максимального увеличения концентрации космических лучей, модуль которого равен отношению производной концентрации в этом направлении к величине концентрации. [ГОСТ 25645.104 84]… … Справочник технического переводчика

Градиент — Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика) … Википедия

анимально-вегетативный градиент — ЭМБРИОЛОГИЯ ЖИВОТНЫХ АНИМАЛЬНО ВЕГЕТАТИВНЫЙ ГРАДИЕНТ – градиент чувствительности у еще не оплодотворенной яйцеклетки с выраженным анимальным и вегетативным полюсами (например, у птиц при отмирании яйцеклетки изменения происходят вначале на… … Общая эмбриология: Терминологический словарь

Кинетика физическая — теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика… … Большая советская энциклопедия

МАССООБМEН — необратимый перенос массы компонента смеси в пределах одной или неск. фаз. Осуществляется в результате хаотич. движения молекул (мол. диффузия), макроскопич. движения всей среды (конвективный перенос), а в турбулентных потоках также в результате… … Химическая энциклопедия

Гипокалиемия — МКБ 10 E … Википедия

Источник

Градиент концентрации – определение и примеры

Определение градиента концентрации

Градиент концентрации возникает, когда растворенное вещество более сконцентрирован в одной области, чем в другой.

«Концентрация» относится к тому, сколько растворенного вещества по сравнению с растворитель, Например, в углу резервуара для воды, в который только что была добавлена ​​соль, концентрация соли будет намного выше, чем в противоположном конце резервуара, где соль не достигалась.

Со временем растворенные вещества всегда снижают градиент концентрации, чтобы «попытаться» создать одинаковую концентрацию на всем протяжении решение.

Разумеется, растворенное вещество ничего не «хочет». Но законы термодинамики гласят, что из-за постоянных движений атомов и молекул вещества будут перемещаться из областей с более высокой концентрацией в более низкую концентрацию, чтобы получить случайное решение. Эта анимация иллюстрирует, как и почему происходит этот процесс:

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

Это можно легко продемонстрировать дома, добавив каплю пищевого красителя на стакан воды. Сначала пищевой краситель будет занимать только небольшое пятно в жидком стакане, где он был добавлен. Но со временем цветные частицы будут распространяться, создавая равномерное распределение цветных частиц по всему дну стекла.

Некоторые жизненные формы используют эту тенденцию растворенных веществ перемещаться из области высокой концентрации в низкую концентрацию, чтобы привести в действие жизненные процессы.

Нейроны, например, способны посылать сигналы так быстро, потому что они используют градиент концентрации заряженных частиц, чтобы создать электрохимический импульс, когда им нужно выстрелить. 20-25% всех калорий, потребляемых человеческим организмом, используются для поддержания этого жизненного градиента концентрации!

Функция градиентов концентрации

Градиенты концентрации являются естественным следствием законов физики. Однако живые существа нашли много способов использовать свои свойства для выполнения важных жизненных функций.

Например, организмы, которым необходимо перемещать вещество в свои клетки или из них, могут использовать движение одного вещества по градиенту его концентрации для транспортировки другого вещества в тандеме.

Организмы могут также использовать градиенты концентрации для осуществления внезапных изменений или движений, высвобождая высокие концентрации растворенного вещества для перемещения в области с низкой концентрацией. Нейроны являются примером клеток, которые используют высокие концентрации растворенных веществ для достижения быстрых изменений.

Примеры градиентов концентрации

Нейроны и натриево-калиевая помпа

Нейроны тратят огромное количество энергии – около 20-25% всех калорий организма, у людей – перекачивая калий в свои клетки и выводя натрий. Результатом является чрезвычайно высокая концентрация калия внутри нервных клеток и очень высокая концентрация натрия снаружи.

Когда клетки связываются, они открывают ионные ворота, которые пропускают натрий и калий. Различия в концентрации натрия / калия настолько сильны, что ионы «хотят» мгновенно выбежать из клетка, Поскольку ионы электрически заряжены, это фактически меняет электрический заряд ячейки.

Этот «электрохимический» сигнал распространяется гораздо быстрее, чем просто химический сигнал, что позволяет нам быстро воспринимать, думать и реагировать.

Проблемы, которые мешают нейронному натриево-калиевому насосу, могут очень быстро привести к смерти, потому что сердце мускул сам опирается на эти электрохимические импульсы для накачки кровь чтобы сохранить нас в живых.

Это делает градиент концентрации натрия / калия в нейронах, возможно, самым важным градиентом концентрации для жизни человека!

Насос Symport глюкозы / натрия

Симпортный насос глюкоза-натрий также использует градиент натрия / калия.

Одной из проблем, с которыми сталкиваются клетки, является перемещение глюкозы – которая является большой и трудной для перемещения по сравнению с крошечными ионами натрия – и которую часто необходимо перемещать в зависимости от градиента концентрации.

Чтобы решить эту проблему, некоторые клетки «связали» движение глюкозы с движением калия, используя белки, которые позволят натрию снижать градиент концентрации – если он принимает глюкозу молекула с этим.

Это еще один пример того, как клетки используют основные законы физики инновационными способами для выполнения функций жизни.

Легкие и Жабры

Наиболее распространенные примеры градиентов концентрации включают твердые частицы, растворенные в воде. Но газы также могут иметь градиенты концентрации.

Жабры человеческих легких и рыб используют градиенты концентрации, чтобы поддерживать нас в живых. Поскольку кислород следует правилам градиентов концентрации, как и любое другое вещество, он имеет тенденцию диффундировать из областей с высокой концентрацией в области с низкой концентрацией. Это означает, что он диффундирует из воздуха в нашу обедненную кислородом кровь.

Легкие и жабры делают этот процесс более эффективным, быстро пропуская нашу самую обедненную кислородом кровь через поверхности наших легких и жабр. Таким образом, кислород постоянно диффундирует в клетки крови, которые в этом больше всего нуждаются.

викторина

1. Какой из следующих законов описывает, как работают градиенты концентрации?A. Движущийся объект имеет тенденцию оставаться в движении, если на него не воздействует внешняя сила.B. Системы всегда прогрессируют до состояния большей случайности.C. Вещества распространяются из областей с высокой концентрацией в области с низкой концентрацией.D. И B, и C.

Ответ на вопрос № 1

D верно. И B, и C верны, и утверждение C является действительным следствием утверждения B. Вещества диффундируют из областей с высокой концентрацией в области с низкой концентрацией как часть движения всей системы к более случайному состоянию с течением времени.

2. Что из нижеперечисленного НЕ относится к градиенту концентрации натрия / калия?A. Вы можете перемещать вещество против градиента концентрации, не затрачивая энергию, если у вас есть право транспортный белок,B. Транспортные белки, которые перемещают вещества против их градиентов концентрации, должны быть снабжены энергией, чтобы функционировать.C. Поскольку клетки должны разрушать молекулы и расходовать энергию, чтобы двигать вещества против градиента их концентрации, это движение не нарушает законы термодинамики.D. Ни один из вышеперечисленных.

Ответ на вопрос № 2

верно. Вещества могут перемещаться против градиентов концентрации только путем расходования энергии. В этом случае клетки расщепляют глюкозу и расходуют огромное количество АТФ, чтобы сделать возможным градиент концентрации натрия / калия. В процессе они перемещают большую систему к случайности, в соответствии с законами термодинамики.

3. Что из нижеперечисленного мы бы не смогли сделать, если бы вещества не имели склонности снижать свои градиенты концентрации?A. СчитатьB. ШагC. вздохнутьD. Все вышеперечисленное

Ответ на вопрос № 3

D верно. Все вышеперечисленные процессы стали возможными благодаря использованию градиентов концентрации!

Источник

ГРАДИЕНТ

ГРАДИЕНТ (лат. gradiens, gradient[is] шагающий) — векторная величина, показывающая направление наиболее быстрого изменения какой-либо функции. Понятием Г. широко пользуются в физике, физ. химии, метеорологии и других науках для характеристики скорости изменения какой-либо величины на единицу длины в направлении ее максимального роста; Г. в биологии — это количественное изменение морфол, или функциональных (в т. ч. биохим.) свойств вдоль одной из осей тела, органа или клетки на любой стадии их развития. Г., отражающий изменение какого-либо физиол, показателя (напр., интенсивности обмена веществ), называют физиол, градиентом (см. Градиент физиологический). При рассмотрении различных биол, процессов чаще встречаются с Г. электрического поля, концентрационным Г., осмотическим Г., гидростатическим Г. и температурным Г.

Градиент электрического поля в биол, объектах возникает в результате перемещения ионов внутри клеток и тканей или вследствие приложения внешнего источника электрического поля, напр, при гальванизации (см. Гальванизация, Электрофорез). Особенно большие значения Г. электрического поля имеют место на биол, мембранах. Так, при толщине мембраны ок. 10 нм и при изменении потенциала на 10 же градиент электрического поля на ней составит 104 в/см. Такое значительное изменение внутреннего электрического поля мембраны может привести к изменению ее поляризации и степени упорядоченности ее структуры. Существует пороговое значение Г. потенциала, при к-ром клетки генерируют потенциал действия (см. Биоэлектрические потенциалы, Возбуждение).

Поступление и выход различных веществ из клеток происходит вследствие наличия Г. их концентрации. Скорость диффузии веществ определяется соотношением: dn/dt =Dq grad C, где n — количество диффундирующих молекул через поверхность q, D — коэф. диффузии, grad С — градиент концентрации; коэффициент диффузии определяется вязкостью среды и размером молекул вещества. Различие в скорости диффузии катионов и анионов (их подвижности) приводит к появлению диффузионного потенциала φ, который возникает на границе двух соприкасающихся растворов и описывается уравнением Нернста:

Что такое градиент концентрации физиология. Смотреть фото Что такое градиент концентрации физиология. Смотреть картинку Что такое градиент концентрации физиология. Картинка про Что такое градиент концентрации физиология. Фото Что такое градиент концентрации физиология

где U — подвижность катиона, V — подвижность аниона, С1 и С2 — концентрация электролита в двух соприкасающихся р-рах; R — газовая константа, T — абсолютная t°, n — заряд иона, F — число Фарадея. Диффузионный потенциал минимален, когда подвижность катиона и аниона равны или близки, напр, в случае раствора KCl. Поэтому этот электролит используется в биологии и медицине в качестве жидкостного проводника при гальванизации, электрофорезе и т. д.

Гидростатический градиент характеризует перепад давления между внешней и внутренней средой клетки, целого организма или отдельных его частей. Так, работа сердца приводит к появлению гидростатического градиента. В артериальной части кровеносной системы возникает положительное гидростатическое давление, в венозной — отрицательное (см. Кровяное давление). Гидростатическое давление может компенсировать осмотическое, что имеет место в капиллярах кровеносной системы. При росте гидростатического Г. (напр., при гипертензии) усиливается выход воды из кровяного русла в ткани, что может привести к возникновению отеков.

Библиография: Байер В. Биофизика, пер. с нем., М., 1962; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, М., 1968; Пасынский А. Г. Биофизическая химия, М., 1968.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *