Что такое наддув дизеля

Наддув дизелей

На современных мощных четырехтактных и двухтактных дизелях применяется наддув для повышения ихмощности и тепловой экономичности. Сущность наддува состоит в том, что воздух в цилиндры дизеля не засасывается из атмосферы, а нагнетается турбокомпрессором или нагнетателем, приводимым от вала двигателя.

Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что одновременно позволяет также подавать в цилиндры и сжигать большее количество топлива, а следовательно, получать при тех же размерах цилиндров и той же частоте вращения вала дизеля большую мощность. Установлено, что мощность дизеля возрастает примерно пропорционально давлению наддувочного воздуха. Таким образом, наддув позволяет почти при тех же размерах и массе двигателя увеличить его мощность в 2-3 раза.

При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что в значительной степени уменьшает воздушный заряд в цилиндре. Поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры. Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3-4 % и снижение удельного расхода топлива примерно на 1,5-2 г/(кВт-ч).

Экономичность дизелей с наддувом повышается вследствие увеличения механического коэффициента полезного действия и дополнительного использования тепла отработавших газов.

Давления сжатия и сгорания в цилиндре также возрастают. Температура же горения и тепловая напряженность дизеля остаются почти неизменными.

Существуют три способа наддува дизелей: нагнетателем, имеющим привод от вала дизеля (механический наддув), газотурбинный и комбинированный.

Механический наддув. Нагнетатель 5 (рис. 13) приводится во вращение через редуктор 6 от коленчатого вала. Воздух засасывается нагнетателем из атмосферы и через впускной

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Газотурбинный наддув. В четырехтактном дизеле с газотурбинным наддувом (рис. 14) отработавшие газы, пройдя выпускной клапан 4, поступают на газовое колесо турбины 1 и, совершив работу, выбрасываются в атмосферу. На одном валу с турбиной находится крыльчатка центробежного нагнетателя 2, который забирает воздух из атмосферы, сжимает его до давления рк и через впускной клапан 3 нагнетает в цилиндр.

При газотурбинном наддуве количество воздуха, подаваемого в цилиндры, будет тем больше, чем больше внешняя нагрузка на дизель, так как в этом случае через турбину пройдет большее количество отработавших га-

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 14. Схема дизеля с газотурбинным наддувом

Комбинированный наддув. Комбинированный (двухступенчатый) наддув (рис. 15) применяется в двухтактных дизелях в том случае, когда воздух необходимо сжать до сравнительно высокого давления (0,2-т-0,3) МПа. Одного нагнетателя 5, приводимого от газовой турбины, оказывается недостаточно для обеспечения дизеля воздухом требуемых параметров, особенно на пониженных нагрузках, так как температура выпускных газов перед турбиной у двухтактного дизеля ниже, чем у четырехтактного, вследствие интенсивной продувки цилиндров воздухом. Поэтому в двухтактных дизелях применяют вторую ступень сжатия воздуха в нагнетателе 7, который имеет механический привод (через редуктор 8) от вала двигателя. При сжатии в первой ступени (турбонагнетателе) воздух нагревается до высокой температуры (100- 150°С), что уменьшает воздушный за ряд цилиндра и, следовательно, мощность и экономичность дизеля. Чтобы избежать этого, после нагнетателя 5 воздух направляется в охладитель 6, где он охлаждается до 50-60 °С.

Работа дизеля с двухступенчатым наддувом протекает следующим образом. При работе под нагрузкой газовая турбина 4 вращает колесо нагнетателя 5 с большой частотой (15 000- 20 000 об/мин), вследствие чего нагнетатель засасывает воздух из атмосферы и под давлением (0,2-г-0,25) МПа подает его в охладитель, и далее в приводной нагнетатель. В этом нагнетателе воздух дополнительно сжимается еще на (0,034-0,05) МПа и через наддувочный коллектор и впускные окна подается в цилиндр дизеля. Во время пуска дизеля, когда газовая турбина не работает, приводной нагнетатель 7 засасывает воздух из атмосферы через нагнетатель 5 и охладитель 6 и подает его в дизель.

Комбинированный двухступенчатый наддув применен в двухтактных тепловозных дизелях 10Д100, 11Д45. 14Д40.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Глава IV. ОСНОВЫ ТЕПЛОВЫХ ПРОЦЕССОВ ДИЗЕЛЕЙ

Источник

Наддув дизелей, способы и схемы наддува

Наддувом называется способ повышения мощности дизелей, основанный на повышении плотности заряда цилиндра и соответствующем увеличении цикловой подачи топлива. Повышение плотности заряда цилиндра в современных дизелях осуществляется путем принудительной подачи воздуха в цилиндр и его охлаждением до температуры, незначительно превышающей температуру точки росы водяных паров охладителей надувочного воздуха.

Способы наддува: механический, газотурбинный, комбинированный.

Механический наддув требует больших затрат мощности на привод навесных компрессоров. Для осуществления газотурбинного наддува в двухтактных дизелях требуется больше энергии, т.к. отсутствуют насосные ходы поршня и температура выпускных газов существенно меньше.

При пуске на малых нагрузках мощности турбины не хватает для осуществления наддува, приходится идти на раннее открытие выпу4скного клапана ( в двигателях серии KGF за 95° до Н.М.Т.). Поэтому в старых судовых двухтактных дизелях использованы разнообразные схемы комбинированного наддува. В качестве первой ступени используется турбокомпрессор, в качестве второй – подпоршневой компрессор или подпоршневая полость. Реже применялись последовательно-ппаралле6льные параллельные соединения компрессоров.

При газотурбинном наддуве применяют наддув при постоянном давлении и импульсный (при переменном давлении перед турбиной), использующий энергию импульсов давления. Турбокомпрессор располагается вблизи группы цилиндров. Подвод газов к турбине осуществляется через короткие выпускные трубопроводы небольшого сечения.

Чтобы импульсы не накладывались друг на друга выпускную систему разделяют на несколько отдельных выпускных систем, замыкающихся за турбину (не более трех цилиндров к одной турбине).

При давлениях надувочного воздуха более »0,2 МПа турбина с импульсным подводом газа имеет КПД ниже, чем турбина с постоянным давлением выпускных газов на входе, в связи с дополнительными потерями из-за переменного давления на входе и перетекания газов в сопловом аппарате.

Поэтому при повышенном давлении наддува применяют преимущественно газотурбинный наддув с постоянным давлением газов перед турбиной.

При повышенных давлениях наддува и мощности турбокомпрессоров в изобарных системах достигается существенное повышение КПД турбокомпрессоров с 55 % до 70 % [15], поэтому в современных МОД выхлопные клапаны открываются позже и полезный ход поршня увеличивается.

В МОД с импульсной системой наддува двигателей типа KGF, VT2BF выпускные клапаны открывались при 95° и 92° поворота коленчатого вала до Н.М.Т. В более современных двигателях MAN & B.W. типа LMC, SMC-C открытие клапана происходит при 66…74° п.к.в. до Н.М.Т. Таким образом, турбонаддув является и средством повышения экономичности СДВС.

Разработаны разные схемы наддува (см. рисунок 2.2) [8]. Самой распространенной в МОД является прямоточно-клапанная схема с включением на малых нагрузках электроприводных воздуходувок, так как на режимах малых мощностей ГТН не обеспечивает надежное воздухоснабжение.

В старых МОД для обеспечения работоспособности на режимах частичных мощностей использовались подпоршневые полости (рисунок 2.2д,е,ж,з) или приводные поршневые насосы ( рисунок 2.2б,г) и, как уже указывалось, системы импульсного наддува с ранним открытием выпускного клапана (рисунок 2.2а). Аварийная электроприводная воздуходувка 9 обеспечивает воздухоснабжение до мощности N=0,2Nном и оборотов n=0,5nном.

В современных двигателях с электронным управлением (MAN & B.W. типа МЕ, Sulzer RT-flex, Mitsubishi UEC-LSE) при работе на частичных нагрузках осуществляется более раннее закрытие выпускного клапана, а на переходных режимах увеличения мощности предусматривается более раннее открытие выхлопного клапана для увеличения располагаемого теплоперепада на турбину.

В двигателях Sulzer RTA имеется две автоматически включающиеся воздуходувки, обеспечивающих пусковой режим и работу на частичных нагрузках вплоть до нагрузок выше 50 % Nном. Продольная перегородка в ресивере обеспечивает более высокие давления наддува на режимах частичных нагрузок [13].

Ответ на этот вопрос изложен также в [4, стр. 6]

MAN & Бурмейстер и Вайн,

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

1 – дизель; 2 – ресивер; 3 – охладитель воздуха; 4 – центробежный нагнетатель; 5 – газовая турбина; 6 – выпускной коллектор; 7 – поршневой нагнетатель; 8 – заслонка;

9 – аварийная воздуходувка (воздуходувка для пуска и работы на малых ходах)

Рисунок 2.2 – Схемы газотурбинного наддува мощных двухтактных

Дата добавления: 2015-04-21 ; просмотров: 113 ; Нарушение авторских прав

Источник

Способы повышения мощности дизелей. Наддув

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Увеличение скорости хода современных судов требует применения мощных энергетических установок. И если для судовых паровых турбин фактор ограничения мощности не существует, то для судовых дизелей ограниченная мощность в одном агрегате является наиболее сложной проблемой.

Дизели судов небольшой и средней грузоподъемности ввиду высокого к. п. д. и малого удельного расхода топлива успешно конкурируют с другими двигателями, а для применения их на судах большой грузоподъемности необходимо увеличивать агрегатную мощность, для чего используют следующие способы:

Каждый из этих способов имеет свои преимущества и недостатки и, главное, ограничения.

Увеличение геометрических размеров цилиндра вызывает возрастание массы подвижных деталей дизеля и, следовательно, инерционных усилий, отрицательно действующих на подшипники дизеля. Поэтому в настоящее время максимальные диаметры цилиндров судовых дизелей некоторых фирм имеют 1060 мм, а ход поршней достигает 2000 мм.

Увеличение количества цилиндров дизеля приводит к увеличению его длины и длины машинного отделения, поэтому у однорядных тихоходных дизелей i = 10 ÷ 12; у быстроходных двухрядных (V-образных) и трехрядных (W-образных) число цилиндров практически ограничено, соответственно i = 24 и i = 36. При большем i усложняется конструкция дизеля и его эксплуатация.

Наиболее перспективным направлением для роста агрегатной мощности судовых дизелей является повышение его среднего эффективного давления ре за счет применения наддува.

Наддувом называется принудительное заполнение рабочего объема цилиндра воздухом повышенного давления, что увеличивает массу заряда воздуха, позволяет повысить также массу заряда топлива с сохранением оптимального коэффициента избытка воздуха α.

Наддув дизеля может осуществляться с применением механического нагнетателя воздуха с приводом от коленчатого вала; такой наддув называется механическим. Прирост мощности при механическом наддуве достигает 30%. Однако если учесть, что примерно половина этой мощности расходуется на привод нагнетателя, а механический к. п. д. ухудшается из-за увеличения числа трущихся узлов дизеля, то такой наддув является малоэффективным и на новых дизелях не применяется.

Наиболее эффективен газотурбинный наддув. Суть его заключается в следующем: от выхлопных газов двигателя, имеющих значительную температуру и давление, приводится в действие специальная газовая турбина, на общем валу с которой находится центробежный нагнетатель воздуха (рис. 88, а). Нагнетатель забирает воздух из машинного отделения, сжимает его и направляет в ресивер дизеля. Газотурбинный наддув в чистом виде применяется только у четырехтактных дизелей и позволяет увеличить мощность дизеля до 100% при давлении наддувочного воздуха до 2 бар.

У четырехтактных дизелей при пуске, когда газовая турбина не работает, пополнение цилиндра зарядом свежего воздуха происходит за счет разности давлений при движении поршня вниз во время пуска.

Обязательным условием работы двухтактного дизеля является наличие в ресивере воздуха повышенного давления. Если учесть, что газовая турбина начинает работать только тогда, когда дизель разовьет частоту вращения до 25% номинальной, то для его пуска необходимо иметь специальное устройство. Таким устройством может быть электронагнетатель периодического действия. Электронагнетатели не получили большого распространения, так как они усложняют конструкцию дизеля, требуют установки специальных заслонок и т. д.

На двухтактных дизелях параллельно и последовательно с газотурбинными нагнетателями устанавливают различные механические устройства, которые облегчают пуск дизеля и позволяют получать более высокие давления наддувочного воздуха. Такой метод наддува называется комбинированным. В качестве дополнительных механических нагнетателей при газотурбинном наддуве могут применяться индивидуальные (для каждого цилиндра) или общие (для всех цилиндров) поршневые продувочные насосы или объемные (ротативные) нагнетатели. В последнее время многие фирмы («Бурмейстер и Вайн», МАН) используют для дополнительного сжатия воздуха и для получения продувочного воздуха при пуске дизеля подпоршневые пространства рабочих цилиндров. Двигатели некоторых фирм в дополнение к газотурбинному наддуву имеют механические нагнетатели и рабочие подпоршневые полости цилиндров. Причем как подпоршневые пространства, так и механические продувочные насосы могут работать параллельно или последовательно относительно друг друга или относительно газотурбонагнетателей. При этом, для увеличения массы заряда в единице объема и, следовательно, повышения эффекта наддува, применяют промежуточные холодильники наддувочного воздуха. Выпускные газы, выходящие из цилиндра дизеля по изолированному трубопроводу, попадают в сопловой аппарат газовой турбины, где внутреняя энергия преобразуется в кинетическую, а оттуда на лопатки газовой турбины, ротор которой находится на одном валу с центробежным нагнетателем. Воздух из машинного отделения забирается нагнетателем и направляется через промежуточный холодильник в цилиндр дизеля.

Если выхлопные газы попадают в общий сборник-коллектор, а затем в сопловой аппарат турбины, такая турбина называется турбиной постоянного давления. У многих четырехтактных и некоторых двухтактных дизелей выхлопные газы направляют по индивидуальным или общим газопроводам (группируя несколько цилиндров) и подают на лопатки газовой турбины в виде импульсов; такая турбина называется импульсной газовой турбиной, а наддув—импульсным. На рис. 88, б показана группировка газопроводов четырехтактного шестицилиндрового дизеля с порядком работы цилиндров 1-3-5-6-4-2; группы цилиндров 1, 4, 5 (А) и 2, 3, 6 (Б) не имеют одновременного выпуска газов, и, следовательно, газы попадают из отдельных цилиндров на лопатки газовой турбины в виде импульсов. При ином числе и порядке работы цилиндров требуется другая группировка цилиндров.

При наддуве у четырехтактных дизелей значительно изменяются фазы газораспределения: их подбирают таким образом, чтобы время наполнения цилиндра по углу поворота мотыля коленчатого вала значительно увеличивалось. Если, например, открытие впускного клапана у четырехтактных дизелей без наддува происходит за 15—30° до в. м. т., а закрытие — через 10—30° после н. м. т., то у дизелей с наддувом открытие происходит за 40—80° до в. м. т., а закрытие — через 20—40° н. м. т. Значительно раньше открывается, а позже закрывается (относительно мертвых точек) и выпускной клапан: из цилиндра необходимо за короткое время выпустить значительно большее количество газов, чем у дизелей без наддува. Для лучшей продувки цилиндра и охлаждения камеры сгорания увеличивают и время перекрытия клапанов.

Схема газотурбинного наддува двухтактного двигателя с прямоточно-клапанной продувкой и с электронагнетателем, который используется при пуске, а также в качестве аварийного, показана на рис. 89, а. Во время работы дизеля отработавшие газы дизеля из цилиндров по индивидуальным патрубкам попадают на лопатки импульсной газовой турбины; продувочный воздух через промежуточный холодильник попадает в подпоршневое пространство цилиндров, которое работает последовательно с газотурбонагнетателем, затем проходит для продувки и заполнения цилиндра. Такой тип наддува применяется на двигателях фирмы «Бурмейстер и Вайн». На последних моделях дизелей этой фирмы и ее лицензиатов (в том числе и БМЗ) не ставят электронагнетатели Э. Н., так как продувка цилиндров при пуске дизеля и при выходе из строя газотурбонагнетателей обеспечивается подпоршневыми полостями цилиндров.

У двигателей «Гетаверкен» с прямоточно-клапанной продувкой вместо подпоршневых пространств используются индивидуальные для каждого цилиндра продувочные насосы (см. рис. 89, б). Такие насосы имеют и некоторые дизели с контурной продувкой («Фиат»).

Фирма МАН наряду с устройством газотурбонагнетателей и использованием подпоршневых пространств цилиндров на некоторых типах дизелей устанавливает поршневые продувочные насосы, которые могут работать последовательно с подпоршневыми пространствами всех или нескольких цилиндров и параллельно с газотурбонагнетателями.

Источник

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

ЧТО ТАКОЕ НАДДУВ И КАК ОН ОСУЩЕСТВЛЯЕТСЯ?

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 31. Схема работы двухроторной трехлопастной воздуходувки

Пока роторы неподвижны, никакого перемещения воздуха в нагнетателе нет. Что же происходит с порцией (объемом) воздуха в полости А между впадинами роторов и корпусом воздуходувки? Как только роторы придут во вращение (в противоположные стороны), порция воздуха (определенное количество его) перемещается ими по направлению стрелок (рис. 31, б). Вращаясь дальше вместе с роторами, объем воздуха переносится между лопастями и стенками корпуса по направлению к нагнетательному окну НО (рис. 31, в). При таком перемещении воздух не сжимается. Это происходит до тех пор, пока объем воздуха, транспортируемый ротором, не получит выход в нагнетательное окно НО. В момент соединения полости А ротора с окном НО картина резко меняется: ведь нагнетательное окно, сообщаемое с цилиндрами дизеля, заполнено сжатым ранее воздухом. Давление этого воздуха больше давления атмосферного воздуха, находящегося в воздуходувке. А поэтому в какой-то момент почти мгновенно давление в нагнетательном окне и корпусе воздуходувки выравнивается, и ротор, продолжающий свое вращение, перемещает, вернее, теперь уже вытесняет воздух из полости А (рис. 31, г) в нагнетательное окно НО, дополнительно сжимая его. Когда поршни в цилиндрах открывают продувочные окна, сжатый воздух устремляется в цилиндры, выталкивает отработавшие газы, т. е. производит продувку и зарядку цилиндров (наддув) свежим воздухом. При быстром вращении роторов воздух непрерывно перемещается от всасывающего к нагнетательному окну, находясь между лопастями роторов. За один оборот вала оба ротора подают шесть порций (объемов) воздуха. Делая 1700 об/мин, роторы воздуходувки дизеля 2Д100 за одну минуту могут подать около 185 м3 воздуха, или 11 100 м3/ч. Чтобы уменьшить пульсацию воздуха, т. е. неравномерность нагнетания его, лопастям роторов придают специальную винтовую форму (см. рис. 31, в). Это способствует также уменьшению шума, возникающего при работе таких нагнетателей.
Валы роторов устанавливают строго параллельно, а пара зубчатых колес воздуходувки гарантирует синхронизацию вращения и неизменное положение роторов относительно друг друга ; изготовляют их по высокому классу точности. Чтобы предохранить поверхности роторов, сделанных из алюминиевого сплава, от износа, между ними и рабочими поверхностями корпуса предусмотрены небольшие радиальные зазоры (от 0,5 до 1,3 мм). С этой же целью роторы установлены так, что их лопасти не касаются друг друга при работе. Здесь конструкторы несколько проигрывают на производительности воздуходувки из-за утечек воздуха через зазоры (особенно при пониженной частоте вращения вала), но зато предотвращают износ и задир алюминиевых роторов, что, конечно, очень важно.
Итак, чтобы описанная воздуходувка работала, необходимо заставить вращаться роторы. Как решить эту задачу? Можно, конечно, применить специальный двигатель внутреннего сгорания или электродвигатель. Но это будет очень громоздко. На дизеле 2Д100 воздуходувка приводится в действие от коленчатого вала (рис. 32, а) с помощью зубчатых колес, установленных на верхнем коленчатом вале и на валах нижнего и верхнего роторов (на рисунке не показаны). Воздуходувка имеет, как говорят, механический привод.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Роторная (или объемная) воздуходувка с механическим приводом обладает одним очень важным свойством: даже при загрязнении окон цилиндров в процессе эксплуатации объем воздуха, находящегося между лопастями роторов воздуходувки, будет все-таки подан (вытеснен) в цилиндры. Правда, это произойдет при повышенном противодавлении. Всем хороша воздуходувка с механическим приводом, но есть у нее существенный недостаток: такой привод отнимает у дизеля 2Д100 значительную часть его мощности — более 147 кВт, или 200 л. с. Нельзя ли создать нагнетатель, который бы не имел привода от коленчатого вала дизеля? Этот вопрос с давних пор занимал конструкторов. Газ после расширения в цилиндрах обладает еще значительным запасом энергии. Нередко энергия, которую несут с собой выпускные газы, достигает 30—35% всей энергии (всего тепла), полученной в двигателе в результате сгорания топлива. Нельзя ли использовать эту драгоценную энергию если не полностью, то хотя бы частично? Тогда значительно повысится экономичность двигателя. Если можно, то как? Очевидно, для этого надо заставить газы более полно расшириться. В газовой турбине в отличие от двигателя внутреннего сгорания газы имеют возможность осуществить дальнейшее расширение. Вот почему в современных дизелях газ, совершивший работу в цилиндрах, выбрасывается не в атмосферу, а направляется в газовую турбину (рис, 32, б).
В газовой турбине для расширения газов предусмотрена установка соплового аппарата и рабочих лопаток. Хотя на выпуске и создается некоторое дополнительное сопротивление, но зато оказывается возможным расширить газы и использовать их энергию. Иными словами, газы, отработавшие в цилиндре, и турбина выполняют здесь такую же роль, как и коленчатый вал дизеля для привода описанной выше роторной воздуходувки. Но так как для привода газовой турбины используется энергия отработавших газов, то применение так называемого газотурбинного привода вместо механического оказывается значительно выгоднее. Итак, при работе дизеля отработавшие газы после выхода из цилиндров поступают в сопловой аппарат турбины. Здесь газы с избыточным давлением на выпуске расширяются, приобретают значительную скорость и направляются на рабочие лопатки, укрепленные на колесе турбины. На рабочих лопатках, которым придана особая форма, происходит поворот и дальнейшее расширение газового потока. При этом снижается его температура. В результате возникает вращающий момент на валу газовой турбины: часть тепловой энергии газа преобразуется в механическую энергию. Отработавшие в турбине газы выпускаются в атмосферу.
На одной оси с турбиной укреплено колесо центробежного компрессора. Турбина вращает рабочее колесо этого компрессора, который засасывает воздух из атмосферы и сжимает его. Из компрессора сжатый воздух направляется в цилиндры дизеля. Чтобы турбина и компрессор занимали меньше места, меньше весили и изготовление их было дешевле, их компонуют в один общий одновальный агрегат, называемый обычно турбокомпрессором. На современных тепловозных дизелях воздух, сжатый в турбокомпрессоре, поступает в цилиндры не сразу, а сначала охлаждается в специальном теплообменнике.
Как же устроен и работает современный турбокомпрессор? Представление об этом мы уже получили.
Рассмотрим устройство турбокомпрессора ТК-34С (среднего давления) на примере дизеля 10Д100 (рис. 33).

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 33. Турбокомпрессор ТК-34С дизеля 10Д100 в разрезе

Отработавшие в дизеле газы по кольцевому впускному патрубку (см. нижнюю часть рисунка) подводятся к сопловому аппарату, в котором повышенное по сравнению со свободным выпуском давление газа преобразуется в скорость, т. е. потенциальная энергия давления преобразуется в кинетическую энергию движения газов. Неподвижные лопатки этого аппарата расположены по окружности перед рабочими лопатками турбинного колеса. Из соплового аппарата газы, имея необходимое направление, с большой скоростью поступают на рабочие лопатки колеса турбины: кинетическая энергия движения газов преобразуется в энергию вращения колеса турбины. Одновременно часть тепловой энергии выпускных газов за счет их расширения в турбинном колесе дополнительно используется для вращения ротора турбины. Газы, отработавшие в турбине, отводятся в атмосферу по выпускному патрубку. А так как на другом конце ротора турбины закреплено колесо компрессора, то, вращая турбинное колесо (с частотой до 18000 об/мин), газы заодно с ним заставляют вращаться с той же частотой и рабочее колесо компрессора. При этом на дизеле 10Д100 это колесо всасывает (через фильтр компрессора) атмосферный воздух и нагнетает его через лопаточный диффузор (расширяющийся канал) в охладитель воздуха, а оттуда во всасывающую полость приводного центробежного компрессора.
Вал ротора опирается на два подшипника скольжения, один из которых является опорно-упорным. В деталях корпуса турбины сделаны каналы, по которым подводится к подшипникам масло из масляной системы дизеля. Благодаря лабиринтным уплотнениям газовые и воздушные полости турбонагнетателя надежно отделены друг от друга, что исключает возможность проникновения газов из одной полости в другую, а также предотвращает выход газов наружу.
Турбокомпрессор охлаждается водой из системы охлаждения дизеля. На двухтактных дизелях 10Д100 (рис. 34) таких турбокомпрессоров два — левый и правый.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 34. Внешний вид дизель-генератора 10Д100 с газотурбинным наддувом

Принципиальная схема наддува, осуществленная на тепловозных дизелях 11Д45 и 10Д100, приведена на рис. 35. Из схемы видно, что воздух, сжатый в турбокомпрессоре (I ступень сжатия), направляется в центробежный нагнетатель с механическим приводом (на дизеле 10Д100 с приводом от верхнего коленчатого вала), который как бы дожиимает наддувочный воздух (II ступень сжатия), после этого воздух подается в цилиндры дизеля. Получается, как принято называть, двухступенчатая (комбинированная) система наддува.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 35. Схема двухступенчатого комбинированного наддува

Спрашивается, зачем понадобилось усложнять конструкцию устройств турбонаддува и устанавливать еще один нагнетатель (II ступень)?
Дело в том, что у двухтактных дизелей очистка цилиндров от продуктов сгорания производится сжатым воздухом. Поэтому в двухтактном двигателе в отличие от четырехтактного обязательным условием для организации рабочего процесса (прежде всего для пуска дизеля) является установка приводного центробежного компрессора. Кроме того, при пуске дизеля и при малых нагрузках, когда энергии отработавших газов недостаточно для наддува дизеля только от турбокомпрессора, подача воздуха в цилиндры осуществляется главным образом приводным центробежным компрессором. Вот почему на дизелях 11Д45, 10Д100 пришлось установить еще один компрессор, приводимый в движение от коленчатого вала.
Охлаждение воздуха при высоком наддуве до поступления его в цилиндры позволяет увеличить плотность воздуха и понизить температуру газа в цилиндре, тем самым снизить тепловую и механическую напряженность деталей цилиндро-поршневой группы дизеля. Поэтому охлаждение наддувочного воздуха находит все более широкое применение в современных тепловозных дизелях. О том, как оно осуществляется, мы узнаем позже.
Чтобы ясно представить себе схемы работы I и II ступени при комбинированном наддуве, посмотрите на рис. 36 и 37, которые теперь не требуют дополнительных разъяснений.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 36. Схема турбокомпрессора дизеля 10Д100

Подчеркнем только еще раз, что турбокомпрессор I ступени состоит из двух надежно изолированных между собой полостей, одна из которых предназначена для газов, а другая — для воздуха. Полости разделены перегородкой (см. рис. 36). Рис. 37 иллюстрирует схему приводного центробежного компрессора II ступени.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 37. Схема приводного центробежного компрессора дизеля 10Д100

Из рисунка видно, что центробежный компрессор приводится в действие через редуктор (от верхнего коленчатого вала). Здесь так же, как и в турбокомпрессоре, камера сжатого воздуха тщательно изолирована от камеры, где размещен редуктор. Редуктор позволяет увеличить частоту вращения рабочего колеса центробежного компрессора с 850 до 8500 об/мин.
Применение газотурбинного наддува и охлаждения воздуха является генеральным направлением повышения мощности современных тепловозных дизелей при тех же габаритах. Огромное значение наддува можно оценить на таком сопоставлении. Дизель 10Д100 имеет столько же цилиндров и тех же размеров, сколько дизель 2Д100. Однако мощность его в 1,5 раза(!) больше — 2210 кВт вместо 1470 кВт, или 3000 вместо 2000 л. с. Этого удалось добиться за счет повышения давления наддува с 0,127 до 0,215 МПа (с 1,3 до 2,2 кгс/см2), большей (за цикл) подачи топлива в дизель и охлаждения воздуха перед поступлением в цилиндры.
Увеличение мощности тепловозов в секции особенно необходимо для дальнейшего роста пропускной и провозной способности железных дорог.

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 38. Внешний вид дизель-генератора Д49 с газотурбинным наддувом

Коломенский тепловозостроительный завод создал четырехтактные дизели с диаметром цилиндра 260 мм и ходом поршня тоже 260 мм типа Д49 (рис. 38) мощностью 2940 кВт (4000 л. с.) в шестнадцати цилиндрах, установленные на тепловозах ТЭП70 и ТЭ121, и мощностью 4400 кВт (6000 л. с.) в двадцати цилиндрах для тепловоза ТЭП75.

ЧТО ДАЕТ ЭКОНОМИЯ ТОПЛИВА?

Для работы двигателя внутреннего сгорания необходимо топливо. Топливо — богатство страны. Добыча топлива, в частности нефти, его переработка, перевозка и хранение требуют больших затрат труда. Почти половина расходов, связанных с содержанием и эксплуатацией тепловозов, приходится на топливо. А ведь дизельными локомотивами выполняется около половины всех перевозок, осуществляемых на стальных магистралях нашей страны.
Чтобы обеспечить работу тысяч тепловозных дизелей, железнодорожный транспорт потребляет дизельного топлива около 18% от общего производства его в стране. Поэтому даже самая небольшая экономия дизельного топлива в масштабе всей железнодорожной сети приобретает государственное значение. Покажем это на таком примере.
Возьмем одну тысячу двухсекционных тепловозов ТЭЗ мощностью 2940 кВт (4000 л. с.) и подсчитаем, сколько потребуется топлива, чтобы эти локомотивы могли работать в течение только 1 ч.
Мощность дизелей всех тепловозов составит
1000X2940 = 2 940000 кВт, или 1000X4000 = 4000000 л. с.
Дизель тепловоза ТЭЗ на каждый киловатт своей мощности в течение 1 ч расходует 231 г (или 170 г на каждую лошадиную силу) дизельного топлива, а 2 940 000 кВт (или 4 000 000 л. с.) потребуют 2 940 000X231=680 т.
Это за один час. Если считать, что тепловоз работает в полную нагрузку только половину суток, то за это время будет израсходовано (не учитывая работу дизеля на холостом ходу) дизельного топлива
680×12 = 8160 т.
Если экономить 1% топлива, то это составит за каждые сутки 81,6 т, а за год 81,6X365 = 30 000 т.
Целое озеро дизельного топлива, для перевозки которого потребуется 10 — 12 тяжеловесных составов! Но это только 1000 тепловозов. А в масштабе всей сети железных дорог? Можно представить, сколько миллионов рублей будет сбережено в год, если к тому же учесть и сокращение расходов, связанных с добычей и транспортированием топлива.
Вот почему придается большое значение вопросам экономии топлива как при создании новых тепловозов, так и при их модернизации: идет напряженная борьба за каждый грамм удельного расхода дизельного топлива. В этой связи трудно переоценить значение новых четырехтактных дизелей. Например, дизели 5Д49 на режиме номинальной мощности расходуют на один киловатт-час 211 г дизельного топлива вместо 218 г, расходуемых двухтактными дизелями 10Д100, установленными на тепловозах 2ТЭ10Л и 2ТЭ10В.
Для того чтобы оценить, насколько полно используется в дизеле теплота, полученная при сжигании топлива, пользуются понятием коэффициента полезного действия (к. п. д.).

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ДИЗЕЛЯ И БАЛАНС ЭНЕРГИИ В ДИЗЕЛЕ

Что такое наддув дизеля. Смотреть фото Что такое наддув дизеля. Смотреть картинку Что такое наддув дизеля. Картинка про Что такое наддув дизеля. Фото Что такое наддув дизеля

Рис. 39. Тепловой баланс дизеля

Из чего складываются потери тепла в дизеле?
Отработавшие газы, покидая силовую установку, уносят с собой около 30 — 32% тепла, внесенного с топливом. Другой, существенной потерей является отвод тепла в воду и масло. Детали дизеля от трения и соприкосновения с горячими газами нагреваются. Чтобы детали не перегрелись и не вышли из строя, их надо непрерывно охлаждать. Потери тепла за счет охлаждения деталей водой и маслом достигают 27—30%. Кроме того, топливо в цилиндрах сгорает не полностью, имеются потери топлива в окружающую среду и т. д. Если сложить все потери, то окажется, что в рассматриваемом балансе дизеля бесполезно расходуется около 64% тепловой энергии дизельного топлива, а на полезную работу используется только 36%. Задача конструкторов и эксплуатационников — снижать потери энергии, но не в ущерб надежности дизелей.
Для дальнейшего повышения топливной экономичности тепловозных дизелей важно совершенствовать их рабочий процесс, особенно на частичных нагрузках. Большое значение имеет создание агрегатов наддува с более высоким к, п. д., а также переход на неохлаждаемые выпускные коллекторы.
Своевременный и высококачественный ремонт топливной аппаратуры, тщательная очистка выпускных и продувочных окон в цилиндровых втулках, правильная регулировка дизелей после ремонта — все это позволяет значительно снизить расход топлива на тепловозах в эксплуатации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *