Что такое наибольшее натуральное число
Математика для блондинок
Страницы
вторник, 16 февраля 2010 г.
Самое большое натуральное число
Самого большого натурального числа нет и быть не может. Математики в таком случае говорят, что натуральный ряд чисел бесконечен. Так даже в Википедии написано.
Да-да, не удивляйтесь, самая крутая поисковая машина Интернета Google названа в честь числа Googol! Оно и не удивительно, ведь создали поисковую машину в далеком-предалеком 1998 году два студента Лэрри Пейдж и Сергей Брин. Представляете, 12 (двенадцать!) лет назад не было Гугла! Как люди Интернетом пользовались?! Но мы немного отвлеклись.
И так, мы считаем, что самым большим натуральным числом является число Гугол. Что нам мешает дописать к этому самому большому числу ещё один, сто первый, нолик? Берем в руки ручку, оглядываемся по сторонам, чтоб никто не видел, и дописываем нолик. Наше самое большое натуральное число увеличилось в десять раз и стало еще больше! Круто! Дописываем еще нолик, а потом еще, и еще. Через время нолики писать уже некуда, а они (нолики) все никак не кончаются. Достаем следующий рулон обоев, приготовленных для ремонта прихожей, и продолжаем писать. На середине рулона заканчивается паста, а самого большого натурального числа мы так и не написали. Если скупить все шариковые ручки в киоске и все обои в строительном магазине, это сколько же ноликов можно дописать? Это будет самое большое натуральное число? Нет, строительных магизинов с обоями очень много, можно еще писать и писать. Забавно, конечно, потратить всю свою жизнь и все папикины деньги на писанину одного числа, но есть развлечения гораздо интереснее.
Давайте теперь посмотрим на проблему самого большого натурального числа с другой стороны. Если ребенок умеет считать только до пяти, то для такого ребенка число «пять» будет самым большим в мире числом. Но мы то хорошо знаем, что есть еще очень много чисел, которые больше числа «пять». Просто мы математику знаем гораздо лучше ребенка. Со временем ребенок сам будет смеяться над своим «самым большим в мире числом».
Нет никаких оснований не верить математикам, утверждающим, что ряд натуральных чисел бесконечен и самого большого натурального числа быть не может.
Пытался найти конструкцию самого большого числа, но даже всезнающая Википедия молчит на этот счет, а поиск по Интернету выдает разный мусор. Поэтому представляю свой собственный вариант САМОГО БОЛЬШОГО ЧИСЛА В МИРЕ. Это будет выглядеть как бесконечность в степени бесконечность, в степени бесконечность, в степени бесконечность. и так до бесконечности. Вместо значка бесконечности можете подставлять любое натуральное число, кроме единицы. Чем большее число вы подставите, тем круче будет взлет к недостижимому. Эта математическая конструкция называется бесконечная тетрация бесконечности:
Вот это и есть САМОЕ БОЛЬШОЕ ЧИСЛО В МАТЕМАТИКЕ, точнее, его математическая конструкция. Подобный принцип поиска самого большого числа гораздо эффективнее тупого дописывания ноликов.
Кстати, маленькие числята, у которых выросло совсем мало ноликов, имеют довольно громкие имена собственные. Загляните на страничку «Единица и двадцать один ноль», если хотите познакомиться с ними поближе. Каждая блондинка обязана знать, чем миллионер отличается от миллиардера. Иначе как вы будете выбирать себе мужа?
Натуральные числа
Определение натурального числа
Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.
Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.
Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.
Какие операции возможны над натуральными числами
Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!
Десятичная запись натурального числа
В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.
Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.
Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.
077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.
Количественный смысл натуральных чисел
Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.
Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».
Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.
Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:
🍌🍌🍌 | 3 предмета («три») |
🍌🍌🍌🍌 | 4 предмета («четыре») |
🍌🍌🍌🍌🍌 | 5 предметов («пять») |
🍌🍌🍌🍌🍌🍌 | 6 предметов («шесть») |
🍌🍌🍌🍌🍌🍌🍌 | 7 предметов («семь») |
🍌🍌🍌🍌🍌🍌🍌🍌 | 8 предметов («восемь») |
🍌🍌🍌🍌🍌🍌🍌🍌🍌 | 9 предметов («девять») |
Основная функция натурального числа — указать количество предметов.
Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.
Однозначные, двузначные и трехзначные натуральные числа
Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.
Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.
По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.
Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.
Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.
Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.
Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.
Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.
Многозначные натуральные числа
Многозначные натуральные числа состоят из двух и более знаков.
1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.
Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.
Сколько всего натуральных чисел?
Однозначных 9, двузначных 90, трехзначных 900 и т.д.
Свойства натуральных чисел
Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:
множество натуральных чисел | бесконечно и начинается с единицы (1) |
за каждым натуральным числом следует другое | оно больше предыдущего на 1 |
результат деления натурального числа на единицу (1) | само натуральное число: 5 : 1 = 5 |
результат деления натурального числа самого на себя | единица (1): 6 : 6 = 1 |
переместительный закон сложения | от перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4 |
сочетательный закон сложения | результат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4) |
переместительный закон умножения | от перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4 |
сочетательный закон умножения | результат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8) |
распределительный закон умножения относительно сложения | чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6 |
распределительный закон умножения относительно вычитания | чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5 |
распределительный закон деления относительно сложения | чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3 |
распределительный закон деления относительно вычитания | чтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2 |
Разряды натурального числа и значение разряда
Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.
Разряд — это позиция, место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.
Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.
Десятичная система счисления
Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.
Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.
Вопрос для самопроверки
Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:
Числа. Натуральные числа.
Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.
Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.
В натуральном ряду каждое число больше предыдущего на единицу.
Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.
Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.
Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.
Всякое натуральное число легко записать в виде разрядных слагаемых.
Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:
307 898 = 300 000 + 7 000 + 800 + 90 + 8
Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.
Классы натуральных чисел.
Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Сравнение натуральных чисел.
Таблица разрядов и классов чисел.
1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
4-й класс миллиарды
1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.
Основные свойства натуральных чисел.
Действия над натуральными числами.
1. Сложение натуральных чисел результат: сумма натуральных чисел.
Формулы для сложения:
В основном, сложение натуральных чисел выполняется « столбиком ».
2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.
Формулы для вычитания:
Вычитание натуральных чисел удобно производить « столбиком ».
3. Умножение натуральных чисел : произведение натуральных чисел.
Формулы для умножения:
(а + b) ∙ с= а ∙ с + b ∙ с
(а – b) ∙ с = а ∙ с – b ∙ с
4. Деление натуральных чисел – операция, обратная операции умножения.
Формулы для деления:
Числовые выражения и числовые равенства.
Запись, где числа соединяются знаками действий, является числовым выражением.
Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.
Порядок выполнения арифметических действий.
Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.
Когда в выражении есть скобки – сначала выполняют действия в скобках.
Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.
What is the highest natural number?
There is no largest natural number. The next natural number can be found by adding 1 to the current natural number, producing numbers that go on “forever”. There is no natural number that is infinite in size. Any natural number can be reached by adding 1 enough times to the smallest natural number.
Why is 0 a natural number?
Is 0 a Natural Number? Zero does not have a positive or negative value. Since all the natural numbers are positive integers, hence we cannot say zero is a natural number. Although zero is called a whole number.
Which is smallest natural No?
The smallest natural number is 1. It is not possible to write the greatest natural number because natural numbers go up to infinity.
What is the largest whole number?
What are Whole Numbers?
Is 0 smallest natural number?
(a) Zero is the smallest natural number.
It is a whole number.
What is the first number 0 or 1?
In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by 2, although by other definitions 1 is the second natural number, following 0.
Is zero a number Yes or no?
0 (zero) is a number, and the numerical digit used to represent that number in numerals. It fulfills a central role in mathematics as the additive identity of the integers, real numbers, and many other algebraic structures. As a digit, 0 is used as a placeholder in place value systems.
What is the smallest number?
0 is the smallest whole number.
What’s the smallest whole number?
The smallest whole number is “0” (ZERO).
What is the smallest prime number?
The first 1000 prime numbers
What is a greatest number?
The greatest number that is a factor of two (or more) other numbers. When we find all the factors of two or more numbers, and some factors are the same (“common”), then the largest of those common factors is the Greatest Common Factor.
What are the first 5 whole numbers?
As the first five whole numbers are 0, 1, 2, 3, and 4.
What are all the whole numbers from 1 to 100?
The first 100 whole numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, …
Is 21 a natural number?
21 (twenty-one) is the natural number following 20 and preceding 22.
…
21 (number)
← 20 21 22 → | |
---|---|
Roman numeral | XXI |
Binary | 101012 |
Ternary | 2103 |
Octal | 258 |
Which is the smallest one digit number 0 or 1?
So zero (0) is the smallest one-digit whole number and one(1) is the smallest one-digit natural number.
Is 0 a real number?
Какое самое большое число (простое или натуральное)
Дети часто задают вопрос: «Какое число самое большое?». Этот вопрос — важный шаг в процессе перехода в мир абстрактных понятий.
Ответ, конечно, прост: числа, скорее всего, бесконечны, но есть определенный порог, за которым числа становятся настолько большими, что в них нет смысла, кроме того, что технически они могут существовать.
Давайте возьмем десятку гигантских чисел, известных нам, но ограничимся крайне важными понятиями в мире чисел.
Десять в восьмидесятой степени — 1 с 80 нулями — это довольно массивное число, обозначающее примерное число элементарных частиц в известной вселенной, и, говоря элементарные частицы, мы не имеем в виду микроскопические частицы — мы говорим о куда меньших вещах вроде кварков и лептонов — о субатомных частицах. Это число в США и современной Великобритании называют «сто квинквавигинтиллионов». Вроде бы, несложно понять, что это число обозначает количество мельчайших частиц в нашей Вселенной, однако это самое маленькое и простое число в нашем списке.
Один гугол
Слово гугол, несколько измененное, стало часто используемым в современности, благодаря популярной поисковой системе. У этого числа есть интересная история — достаточно просто погуглить. Термин был придуман Милтоном Сироттой в 1938 году, когда ему было 9 лет. И хотя это относительно абстрактное число, и его существование объясняется необходимостью технического существования, ему все-таки нашли применение.
Алексис Лемер поставил мировой рекорд, рассчитав корень тринадцати из стозначного числа. Гугол — это стозначное число, число с сотней нулей. Также предполагается, что от одного до полутора гугол лет с момента Большого Взрыва взорвется самая массивная черная дыра. И тогда Вселенная вступит в так называемую «темную эпоху» — конец той научной вселенной, какой мы ее знаем.
8,5 х 10^185
Длина Планка — это очень маленькая длина, примерно 1,616199 x 10-35, или 0,00000000000000000000000000000616199 метра. В дюймовом кубе этих длин примерно с гугол. Длина и объем Планка играют важную роль в отраслях квантовой физике — например, теории струн — поскольку позволяют производить вычисления на самых мельчайших масштабах. Во вселенной примерно 8,5 x 10^185 объемов Планка. Это достаточно большое число, и ему все же нет практического применения, но оно остается достаточно простым в нашем списке.
2^43,112,609 – 1
Третье по величине число в этом списке — это число всех планковых объемов во Вселенной, и в нем 185 цифр. А в этом числе почти 13 миллионов цифр. Чем это число важно? Это самое большое из известных сегодня простых чисел. Его обнаружили в августе 2008 года в ходе Great Internet Messene Prime Search (GIMPS).
Вы наверняка слышали это слово, хотя бы в фильме «Назад в будущее», когда доктор Эммет Браун бормотал «она одна на миллион, одна на миллиард, одна на гуголплекс». Что такое гуголплекс? Помните длину гугола? Единица и сто нулей. А гуголплекс — это десять в степени гугол. Это больше, чем число всех частиц в известной нам части вселенной.
Вы можете отметить, что можно возводить десять в степень гуголплекс и будет еще больше, и так далее, и окажетесь совершенно правы.
Числа Скьюза
Число Скьюза — это верхний предел для математической задачи π(x) > Li(x), хоть и просто выглядящей, но крайне сложной на самом деле. По существу, число Скьюза доказывает, что число x существует и нарушает это правило, если предположить, что гипотеза Римана верна, а число x меньше, чем 10^10^10^36, первое число Скьюза. Даже первое число Скьюза больше гуголплекса. Есть также и самое большое число Скьюза: x меньше, чем 10^10^10^963.
Время возвращения Пуанкаре
Это очень сложная вещь, но основная концепция относительно проста: при наличии достаточного времени, все возможно. Теорема Пуанкаре о возвращении предполагает количество времени, которого было бы достаточно для того, чтобы однажды вся Вселенная вернулась в свое нынешнее состояние, вызванное случайными квантовыми флуктуациями. Короче, «история повторится». Предполагается, что это займет 10^10^10^10^10^1,1 лет.
Число Грэма
В 80-х годах это число попало в Книгу рекордов Гиннесса как самое массивное конечное число, когда-либо использованное в математических доказательствах. Оно было выведено Роном Грэмом как верхний предел для проблем теории Рамси о многоцветных гиперкубах. Число настолько большое, что для его записи используется стрелочная нотация Кнута (метод записи больших чисел) и собственное уравнение Грэма. Метод Кнута и принцип работы стрелок сложно объяснить, но вы можете представить себе это так. 3↑3 превращается в 3^3 или 27, 3↑↑3 превращается в 3^3^3 или 7,625,597,484,987. Вы можете добавить еще одну стрелку к 3↑↑↑3 и выйти на 7,5 триллионов уровней. Само по себе это число значительно больше, чем время возвращения Пуанкаре, поскольку вы можете добавить бесконечное число стрелок, и каждая стрелка будет невероятно увеличивать число.
Число Грэма выглядит так: G=f64(4), где f(n)=3↑^n3. Лучший способ его представить — разложить по полочкам. Первый слой — это 3↑↑↑↑3, что уже невероятно много. Следующий слой — это множество стрелок между тройками. Возьмите эти стрелки и поместите между следующими тройками. Это умножается в 64 раза. Даже сам Грэм не знает первое число, но последние десять вот: 2464195387. Вся наблюдаемая вселенная слишком мала, чтобы вместить в себя обыкновенную десятичную запись числа Грэма.
∞. Бесконечность
Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.
Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.
В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю. И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии.
Простите, но этот пункт здесь очень важен.
Самое большое число в мире
“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.Дуглас Рэй
Продолжаем нашу рубрику САМОГО САМОГО. Сегодня у нас числа …Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион.
А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности.
А если же задаться вопросом: какое самое большое число существует, и какое у него собственное название?Сейчас мы все узнаем …
Существуют две системы наименования чисел — американская и английская.
таблицу). Так получаются числа — триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Американская система используется в США, Канаде, Франции и России. Узнать количество нулей в числе, записанном по американской системе, можно по простой формуле 3·x+3 (где x — латинское числительное).
Английская система наименования наиболее распространена в мире. Ей пользуются, например, в Великобритании и Испании, а также в большинстве бывших английских и испанских колоний.
То есть после триллиона в английской системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т.д.
Из английской системы в русский язык перешло только число миллиард (10 9), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система.
Но кто у нас в стране что-то делает по правилам! 😉 Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе) и означает оно, судя по всему, 1000 триллионов, т.
Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.
Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33:
И вот, теперь возникает вопрос, а что дальше.
Что там за дециллионом? В принципе, можно, конечно же, при помощи объединения приставок породить такие монстры, как: андецилион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион и новемдециллион, но это уже будут составные названия, а нам были интересны именно собственные названия чисел. Поэтому собственных имён по этой системе, помимо указанных выше, ещё можно получить лишь всего три — вигинтиллион (от лат. viginti — двадцать), центиллион (от лат. centum — сто) и миллеиллион (от лат. mille — тысяча). Больше тысячи собственных названий для чисел у римлян не имелось (все числа больше тысячи у них были составными). Например, миллион (1 000 000) римляне называли decies centena milia, то есть «десять сотен тысяч». А теперь, собственно, таблица:
Таким образом, по подобной системе числа больше, чем 10 3003, у которого было бы собственное, несоставное название получить невозможно! Но тем не менее числа больше миллеиллиона известны — это те самые внесистемные числа. Расскажем, наконец-то, о них.
Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000.
Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо.
Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.
Насчёт происхождения этого числа существуют разные мнения. Одни считают, что оно возникло в Египте, другие же полагают, что оно родилось лишь в Античной Греции. Как бы то ни было на самом деле, но известность мириада получила именно благодаря грекам.
Мириада являлось названием для 10 000, а для чисел больше десяти тысяч названий не было. Однако в заметке «Псаммит» (т.е. исчисление песка) Архимед показал, как можно систематически строить и называть сколь угодно большие числа.
В частности, размещая в маковом зерне 10 000 (мириада) песчинок, он находит, что во Вселенной (шар диаметром в мириаду диаметров Земли) поместилось бы (в наших обозначениях) не более чем 1063песчинок.
Любопытно, что современные подсчеты количества атомов в видимой Вселенной приводят к числу 1067 (всего в мириаду раз больше). Названия чисел Архимед предложил такие:
Самое большое число в мире
Считается, что концепция чисел впервые возникла, когда доисторические люди начали использовать свои пальцы для подсчета чего-либо. С тех пор человечество прошло долгий путь. Теперь мы используем калькуляторы и компьютеры для подсчета самых больших чисел. И даже появились названия для чисел, которые настолько велики, что их с трудом можно представить.
Бесконечность счетных чисел
Казалось бы, ответ на вопрос о том, каково самое большое число в математике — очень прост. Бесконечность, верно? Но это не совсем правильно. Ведь бесконечность — вовсе не число, а концепция. Идея.
Бесконечность (infinitum) — это понятие, которое в переводе с латинского означает «без границ». Определение бесконечности в математике гласит, что независимо от того, насколько велико число, вы всегда можете добавить к нему 1, и оно станет больше.
Поэтому, строго говоря, не существует такого понятия, как самое большое число в мире. Можно лишь назвать наибольшее число, которому дали конкретное название.
Вот некоторые наиболее известные названия больших чисел:
3 | тясяча | thousand |
6 | миллион | million |
9 | миллиард (биллион) | billion |
12 | триллион | trillion |
15 | квадриллион | quadrillion |
18 | квинтиллион | quintillion |
21 | секстиллион | sextillion |
24 | септиллион | septillion |
27 | октиллион | octillion |
30 | нониллион | nonillion |
33 | дециллион | decillion |
36 | ундециллион | undecillion |
39 | дуодециллион | duodecillion |
42 | тредециллион | tredecillion |
45 | кватуордециллион | quattuordecillion |
48 | квиндециллион | quindecillion |
51 | сексдециллион | sexdecillion |
54 | септендециллион | septendecillion |
57 | октодециллион | octodecillion |
60 | новемдециллион | novemdecillion |
63 | вигинтиллион | vigintillion |
66 | унвигинтиллион | unvigintillion |
69 | дуовигинтиллион | duovigintillion |
72 | тревигинтиллион | trevigintillion |
75 | кватуорвигинтиллион | quattuorvigintillion |
78 | квинвигинтиллион | quinvigintillion |
81 | сексвигинтиллион | sexvigintillion |
84 | септенвигинтиллион | septenvigintillion |
87 | октовигинтиллион | octovigintillion |
90 | новемвигинтиллион | novemvigintillion |
93 | тригинтиллион | trigintillion |
96 | унтригинтиллион | untrigintillion |
99 | дуотригинтиллион | duotrigintillion |
102 | третригинтиллион | trestrigintillion |
105 | кватортригинтиллион | quattuortrigintillion |
108 | квинтригинтиллион | quintrigintillion |
111 | секстригинтиллион | sextrigintillion |
114 | септентригинтиллион | septentrigintillion |
117 | октотригинтиллион | octotrigintillion |
120 | новемтригинтиллион | novemtrigintillion |
123 | квадрагинтиллион | quadragintillion |
126 | унквадрагинтиллион | unquadragintillion |
129 | дуоквадрагинтиллион | duoquadragintillion |
132 | треквадрагинтиллион | trequadragintillion |
135 | кваторквадрагинтиллион | quattuorquadragintillion |
138 | квинквадрагинтиллион | quinquadragintillion |
141 | сексквадрагинтиллион | sexquadragintillion |
144 | септенквадрагинтиллион | septenquadragintillion |
147 | октоквадрагинтиллион | octoquadragintillion |
150 | новемквадрагинтиллион | novemquadragintillion |
153 | квинквагинтиллион | quinquagintillion |
156 | унквинкагинтиллион | unquinquagintillion |
159 | дуоквинкагинтиллион | duoquinquagintillion |
162 | треквинкагинтиллион | trequinquagintillion |
165 | кваторквинкагинтиллион | quattuorquinquagintillion |
168 | квинквинкагинтиллион | quinquinquagintillion |
171 | сексквинкагинтиллион | sexquinquagintillion |
174 | септенквинкагинтиллион | septenquinquagintillion |
177 | октоквинкагинтиллион | octoquinquagintillion |
180 | новемквинкагинтиллион | novemquinquagintillion |
183 | сексагинтиллион | sexagintillion |
186 | унсексагинтиллион | unsexagintillion |
189 | дуосексагинтиллион | duosexagintillion |
192 | тресексагинтиллион | tresexagintillion |
195 | кваторсексагинтиллион | quattuorsexagintillion |
198 | квинсексагинтиллион | quinsexagintillion |
201 | секссексагинтиллион | sexsexagintillion |
204 | септенсексагинтиллион | septensexagintillion |
207 | октосексагинтиллион | octosexagintillion |
210 | новемсексагинтиллион | novemsexagintillion |
213 | септагинтиллион | septuagintillion |
216 | унсептагинтиллион | unseptuagintillion |
219 | дуосептагинтиллион | duoseptuagintillion |
222 | тресептагинтиллион | treseptuagintillion |
225 | кваторсептагинтиллион | quattuorseptuagintillion |
228 | квинсептагинтиллион | quinseptuagintillion |
231 | секссептагинтиллион | sexseptuagintillion |
234 | септенсептагинтиллион | septenseptuagintillion |
237 | октосептагинтиллион | octoseptuagintillion |
240 | новемсептагинтиллион | novemseptuagintillion |
243 | октогинтиллион | octogintillion |
246 | уноктогинтиллион | unoctogintillion |
249 | дуооктогинтиллион | duooctogintillion |
252 | треоктогинтиллион | treoctogintillion |
255 | кватороктогинтиллион | quattuoroctogintillion |
258 | квиноктогинтиллион | quinoctogintillion |
261 | сексоктогинтиллион | sexoctogintillion |
264 | септоктогинтиллион | septoctogintillion |
267 | октооктогинтиллион | octooctogintillion |
270 | новемоктогинтиллион | novemoctogintillion |
273 | нонагинтиллион | nonagintillion |
276 | уннонагинтиллион | unnonagintillion |
279 | дуононагинтиллион | duononagintillion |
282 | тренонагинтиллион | trenonagintillion |
285 | кваторнонагинтиллион | quattuornonagintillion |
288 | квиннонагинтиллион | quinnonagintillion |
291 | секснонагинтиллион | sexnonagintillion |
294 | септеннонагинтиллион | septennonagintillion |
297 | октононагинтиллион | octononagintillion |
300 | новемнонагинтиллион | novemnonagintillion |
303 | центиллион | centillion |
Как называется самое большое простое число
Какое самое большое число в мире
В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма. Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея.
Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».
Математики позакрашивали кубик и так и эдак, получилось, что до шестимерного куба можно исхитриться и сделать, чтобы линии одного цвета, соединяющие четыре вершины, не лежали в одной плоскости. А вот с семимерным, как выяснили Грэм и Ротшильд, такой фокус уже не провернешь. И с восьмимерным.
И… «и так далее», которое, впрочем, не бесконечно, а заканчивается фантастически гигантским числом. Вот его-то и именуют числом Грэма. Кстати, в настоящее время решение Грэма и Ротшильда устарело. Математики выяснили, что 6-7-8-9-10-11-12-мерные кубы все же можно покрасить без «конвертов».
Но где-то в промежутке между 13 и числом Грэма гарантированно есть число выше которого «конверты» в любом случае будут.
Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.
И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:
то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 1019 и 1,3971672·10316 и приблизительно равное e727,951336108.
Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».
Возможно ли представить и записать число за гранью понимания
Математики не смогут назвать вам точное количество цифр в числе Грэма, не говоря уже о том, чтобы досчитать до него. Известны лишь последние 50 цифр самого большого числа в мире — это …03222348723967018485186439059104575627262464195387.
А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.
Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.
Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом.
И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку.
Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.
Как записать G64 с помощью метода Кнута
В 1976 году американский ученый Дональд Кнут предложил понятие сверхстепеней или нотацию Кнута. Это метод, позволяющий при помощи стрелочек, направленных вверх, записывать очень большие числа. Возведение в степень обозначается одной стрелкой вверх: ↑.
Вот как выглядит эта нотация: a ↑ b = ab = a × a × a × …, и так b раз.
Важной особенностью стрелок вверх является то, что они растут очень быстро. Экспонентация растет гораздо быстрее, чем умножение. 2 × 10 — это всего лишь 20, но 2↑10 = 1024. Таким же образом, каждый новый уровень стрелок растет намного быстрее, чем предыдущий уровень.
Если мысленно представить себе степенную башню из троек 3↑↑↑4 то получится конструкция, размером от Земли до Марса. А ведь мы еще даже не дошли до «нижней ступеньки», ведущей нас к числу Грэма.
Мы можем описать число Грэма огромным набором этих стрелок вверх.
Проще всего думать об этом как об итерационном процессе. Мы начинаем снизу с g 1 = 3 ↑↑↑↑ 3, а затем создаем вторую строку (назовем ее g 2) с g 1 стрелками между тройками.
Тогда g 3 — это две тройки, разделенные g 2 стрелками вверх и так далее, пока g 64 с g 63 стрелками между тройками не будет числом Грэма.
Если выбрать продолжительность жизни, равную числу Грэма вместо бессмертия, то результат будет практически одинаков. Даже если предположить, что условия во Вселенной, в Солнечной системе и на Земле вечно останутся неизменными, человеческий мозг никак не мог бы выдержать столь длинный промежуток времени без пагубных изменений.
Самое большое число
Из школьного курса известно, что наибольшего числа не существует. Ведь если к самому большому числу прибавить хотя бы единицу, то получим еще большее число. Школьник с легкостью скажет, что, например, самое большое двузначное число — 99, а трехзначное — 999 и т.д.
Существует два алгоритма наименования чисел – английский и американский.
В американском названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион. Далее получаются числа: триллион, квадриллион, квинтиллион. После идут секстиллион, септиллион, октиллион, нониллион и дециллион. Такой способ используют в США, Канаде, России и Франции.
Американский алгоритм наименования чисел
Английский алгоритм используют в Испании и Великобритании, а так же в ряде бывших колоний.
Здесь названия строятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард».
После триллиона идет триллиард, после квадриллион, квадриллиард и т.д. Получается, что по английскому и американскому алгоритму одни и те же большие числа называются по-разному.
Читайте по теме: Самое маленькое число
В русский язык из английской системы пришел только миллиард (109), который американцы называют биллионом. Иногда в России употребляют слово триллиард, т.е. 1000 триллионов или квадриллион.
Самое большое простое число в мире – 274207281 – 1, которое содержит 22 338 618 десятичных цифр (простое число Мерсенна). Значение нашли в 2015 году в ходе проекта по распределенному поиску простых чисел Мерсенна GIMPS.
Поясним, что простыми называются натуральные (целые положительные) числа, имеющие только два делителя — единицу и само себя. Например, 2, 3, 5, 7 — простые числа. Список продолжают 11, 13, 17, 19… Кроме двойки все числа нечетные, иначе бы делились не только на единицу и себя, но и на два.
Значит, найденное простое число еще и самое большое из нечетных.
Маренн Марсен и самое большое простое число
По утверждению Евклида, простых чисел бесконечное множество, значит, наибольшего простого числа нет. Ученые до сих пор ищут числа-рекордсмены. И тому есть разумное объяснение. Всемирная организация Electronic Frontier Foundation учредила награды за подобные открытия: чем больше найденное число, тем выше награда.
Есть специальный способ проверки простоты чисел, который называется тест Люка-Лемера. Правда, предназначен он исключительно для чисел Мерсенна. Что же это за числа? Это вид натуральных чисел, расположенных в определенной последовательности. Имя им дал французский математик Мерсенн Марен. Вид числа Мерсенна такой:
где n — натуральное число.
При n = 1, 2, 3, 4, … числа Мерсенна образуют последовательность, начинающуюся с 1, 3, 7, 15. Затем идут 31, 63, 127. Продолжают ряд 255, 511, 1023, 2047 и т.д.
Такие числа используют в криптографии, например, для усовершенствования банковских кодов.
Внесистемные числа
Кроме чисел, которые записаны при помощи английской или американской систем, известны внесистемные числа. У них есть собственные названия, в которых нет латинских префиксов. Для понимания сначала рассмотрим запись латинскими числительными.
Единица – это 100, десять — 101 и так далее: миллиард — 109, триллион — 1012, квадриллион — 1015, квинтиллион — 1018, секстиллион — 1021, септиллион — 1024, октиллион — 1027, нониллион — 1030, дециллион — 1033.
С помощью приставок можно и дальше выводить числа: андециллион, дуодециллион, тридециллион и так далее. Но нужны собственные названия чисел, а тут только составные названия. Поэтому по этой системе собственных имен еще только три — вигинтиллион — 1063, центиллион — 10303, миллеиллион — 103003.
В миллеиллионе 3003 нуля
Число с собственным, а не составным названием больше 103003 получить невозможно. Однако числа больше миллеиллиона известны – это внесистемные числа.
Самое маленькое внесистемное число носит название мириада. Означает сотню сотен, т.е. 10000.
Почему единицу не относят к простым числам, и когда её вообще начали считать числом
Мой друг инженер недавно меня удивил. Он сказал, что не уверен, является число 1 простым или нет. Я удивилась, потому что никто из математиков не считает единицу простым.
Путаница начинается с определения, которое дают простому числу: это положительное целое число, которое делится только на 1 и само на себя. Число 1 делится на 1, и оно делится само на себя. Но деление на себя и на 1 здесь не является двумя различными факторами. Так простое число это или нет? Когда я пишу определение простого числа, то пытаюсь устранить эту двусмысленность: я прямо говорю о необходимости ровно двух различных условий, деление на 1 и само на себя, или что простое число должно быть целым числом больше 1. Но зачем идти на такие меры, чтобы исключить 1?
Моё математическое образование научило меня, что хорошей причиной того, почему 1 не считается простым, является основная теорема арифметики. Она утверждает, что каждое число может быть записано как произведение простых чисел ровно одним способом. Если бы 1 было простым, мы бы потеряли эту уникальность. Мы могли бы записать 2 как 1×2, или 1×1×2, или 1594827×2. Исключение 1 из простых чисел устраняет это.
Изначально я планировала в статье объяснить основную теорему арифметики и покончить с этим. Но на самом деле не так сложно изменить формулировку теоремы для решения проблемы с единицей.
В конце концов, вопрос моего друга разжёг моё любопытство: как математики остановились на этом определении простого числа? Беглый поиск по Википедии показал, что единица раньше считалась простым числом, а сейчас нет.
Но статья Криса Колдуэлла и Енг Сюна демонстрирует немного более сложную историю.
Это можно понять с самого начала их статьи: «Во-первых, является ли число (особенно единица) простым — это вопрос определения, то есть вопрос выбора, контекста и традиции, а не вопрос доказательства. Тем не менее, определения не возникают случайным образом; выбор связан с нашим использованием математики и, особенно в этом случае, нашей нотацией».
Колдуэлл и Сюн начинают с классических греческих математиков. Они не считали 1 числом так же, как 2, 3, 4 и так далее. 1 считалась цифрой, а число состояло из нескольких цифр. По этой причине 1 не могла быть простым — это даже не число.
Арабский математик IX века аль-Кинди писал, что это не число и, следовательно, не является чётным или нечётным. В течение многих веков преобладало представление, что единица — это строительный блок для составления всех чисел, но не само число.
В 1585 году фламандский математик Саймон Стевин указал, что в десятичной системе нет никакой разницы между 1 и любыми другими числами. Во всех отношениях 1 ведёт себя как любая другая величина. Хотя и не сразу, но это наблюдение в конечном итоге привело математиков к принятию 1 как любого другого числа. До конца XIX века некоторые выдающиеся математики считали 1 простым, а некоторые нет. Насколько я могу судить, это не было причиной разногласий; для самых популярных математических вопросов различие не являлось критически важным. Колдуэлл и Сюн цитируют Г. Х. Харди как последнего крупного математика, считающего 1 простым (он явно указал его в качестве простого числа в первых шести изданиях «Курса чистой математики», опубликованных между 1908 и 1933 годами, а в 1938 году изменил определение и назвал 2 наименьшим простым). В статье упоминаются, но не разбираются подробно изменения в математике, из-за которых 1 исключили из списка простых чисел. В частности, одним из важных изменений стала разработка множеств за пределами множества целых чисел, которые ведут себя как целые.
У числа 2 обратное значение 1/2 входит в множество рациональных или действительных чисел, но не является целым: 1/2×2=1). Число 1 оказалось собственным обратным числом. Ни у какого другого положительного целого числа нет обратного значения в множестве целых чисел. Число с обратным значением называется обратимым элементом.
Если 2 является простым, то и −2 должно быть таким же.
Я старательно избегала в предыдущем абзаце определения простого из-за неудачного факта, что для этих больших множеств такое определение не подходит! То есть оно немного нелогично, и я бы выбрала другое. Для положительных целых чисел у каждого простого числа p два свойства:
Его нельзя записать как произведение двух целых чисел, ни одно из которых не является обратимым элементом.
Если произведение m×n делится на p, то m или n должны быть делимы на p (для примера, m=10, n=6, а p=3.)
Первое из этих свойств — то, как мы могли бы охарактеризовать простые числа, но, к сожалению, тут получается неприводимый элемент. Второе свойство — это простой элемент. В случае натуральных чисел, конечно, одни и те же числа удовлетворяют обоим свойствам. Но это не относится к каждому интересному набору чисел.
В качестве примера рассмотрим множество чисел вида a+b√−5 или a+ib√5, где a и b — целые числа, а i — квадратный корень из −1. Если вы умножите числа 1+√−5 и 1-√−5, то получите 6.
Конечно, вы также получите 6, если умножите 2 и 3, которые тоже находятся в этом множестве чисел при b=0.
Каждое из чисел 2, 3, 1+√−5, и 1−√−5 нельзя представить как произведение чисел, которые не являются обратимыми элементами (если не верите мне на слово, это не слишком трудно проверить).
Но произведение (1+√−5)(1−√−5) делится на 2, а 2 не делится ни на 1+√−5, ни на 1−√−5 (опять же, можете проверить, если не верите мне). Таким образом, 2 является неприводимым элементом, но не простым. В этом наборе чисел 6 можно разложить на неприводимые элементы двумя различными способами.
Приведённое выше число, которое математики могут назвать Z[√-5], содержит два обратимых элемента: 1 и −1. Но есть аналогичные множества чисел с бесконечным количеством обратимых элементов. Поскольку такие множества стали объектами изучения, есть смысл чётко разграничить определения обратимого, неприводимого и простого элементов. В частности, если есть множества чисел с бесконечным числом обратимых элементов, становится всё труднее понять, что мы подразумеваем под уникальной факторизацией чисел, если не уточнить, что обратимые элементы не могут быть простыми. Хотя я не историк математики и не занимаюсь теорией чисел и хотела бы прочитать больше, как именно происходил этот процесс, но я думаю, что это одна из причин, которые Колдуэлл и Сюн считают причиной исключения 1 из простых чисел.
Как это часто бывает, мой первоначальный аккуратный и лаконичный ответ на вопрос, почему всё устроено так, как есть, в конечном итоге стал только частью проблемы. Спасибо моему другу за то, что задал вопрос и помог мне узнать больше о сложной истории простоты.
Простые и составные числа: примеры, таблица простых чисел, решето Эратосфена
В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.
Простые и составные числа – определения и примеры
Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.
Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1.
Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.
Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.
Простые числа – это натуральные числа, имеющие только два положительных делителя.
Составное число – это натуральное число, имеющее более двух положительных делителей.
Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1. Дадим определение целых чисел.
Натуральные числа, которые не являются простыми, называют составными.
Простые числа: 2, 3, 11, 17, 131, 523. Они делятся только сами на себя и на 1. Составные числа: 6, 63, 121, 6697. То есть число 6 можно разложить на 2 и 3, а 63 на 1, 3, 7,9, 21, 63, а 121 на 11, 11, то есть его делители будут 1, 11, 121. Число 6697 разложится на 37 и 181. Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.
Таблица простых чисел
Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:
Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000, тогда следует задуматься об использовании решета Эратосфена.
Рассмотрим теорему, которая объясняет последнее утверждение.
Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.
Возьмем, что а является натуральным числом, которое больше 1, b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.
Допустим, что b – составное число. Отсюда имеем, что есть делитель для b, который отличен от 1 как и от b. Такой делитель обозначается как b1. Необходимо, чтобы условие 1
Самое большое число в мире
В детстве меня мучил вопрос, какое существует
самое большое число, и я изводил этим дурацким
вопросом практически всех подряд. Узнав число
миллион, я спрашивал, а есть ли число больше
миллиона. Миллиард? А больше миллиарда? Триллион?
А больше триллиона? Наконец, нашёлся кто-то умный,
кто мне объяснил, что вопрос глуп, так как
достаточно всего лишь прибавить к самому
большому числу единицу, и окажется, что оно
никогда не было самым большим, так как существуют
число ещё больше.
И вот, спустя много лет, я решил задаться другим
вопросом, а именно: какое существует самое
большое число, которое имеет собственное
название? Благо, сейчас есть инет и озадачить
им можно терпеливые поисковые машины, которые не
будут называть мои вопросы идиотскими ;-).
Собственно, это я и сделал, и вот, что в результате
выяснил.
Число | Латинское название | Русская приставка |
1 | unus | ан- |
2 | duo | дуо- |
3 | tres | три- |
4 | quattuor | квадри- |
5 | quinque | квинти- |
6 | sex | сексти- |
7 | septem | септи- |
8 | octo | окти- |
9 | novem | нони- |
10 | decem | деци- |
Существуют две системы наименования чисел —
американская и английская.
таблицу).
Так получаются числа — триллион, квадриллион,
квинтиллион, секстиллион, септиллион, октиллион,
нониллион и дециллион. Американская система
используется в США, Канаде, Франции и России.
Узнать количество нулей в числе, записанном по
американской системе, можно по простой формуле
3·x+3 (где x — латинское числительное).
Английская система наименования наиболее
распространена в мире. Ей пользуются, например, в
Великобритании и Испании, а также в большинстве
бывших английских и испанских колоний.
То есть после триллиона в английской системе
идёт триллиард, а только затем квадриллион, за
которым следует квадриллиард и т.д.
Из английской системы в русский язык перешло
только число миллиард (10 9), которое всё же
было бы правильнее называть так, как его называют
американцы — биллионом, так как у нас принята
именно американская система.
Но кто у нас в
стране что-то делает по правилам! 😉 Кстати,
иногда в русском языке употребляют и слово
триллиард (можете сами в этом убедиться,
запустив поиск в Гугле или Яндексе) и означает оно, судя по
всему, 1000 триллионов, т.
Кроме чисел, записанных при помощи латинских
префиксов по американской или англйской системе,
известны и так называемые внесистемные числа,
т.е. числа, которые имеют свои собственные
названия безо всяких латинских префиксов. Таких
чисел существует несколько, но подробнее о них я
расскажу чуть позже.
Вернемся к записи при помощи латинских
числительных. Казалось бы, что ими можно
записывать числа до бессконечности, но это не
совсем так. Сейчас объясню почему. Посмотрим для
начала как называются числа от 1 до 10 33:
Название | Число |
Единица | 10 0 |
Десять | 10 1 |
Сто | 10 2 |
Тысяча | 10 3 |
Миллион | 10 6 |
Миллиард | 10 9 |
Триллион | 10 12 |
Квадриллион | 10 15 |
Квинтиллион | 10 18 |
Секстиллион | 10 21 |
Септиллион | 10 24 |
Октиллион | 10 27 |
Нониллион | 10 30 |
Дециллион | 10 33 |
И вот, теперь возникает вопрос, а что дальше.
Что
там за дециллионом? В принципе, можно, конечно же,
при помощи объединения приставок породить такие
монстры, как: андецилион, дуодециллион,
тредециллион, кваттордециллион, квиндециллион,
сексдециллион, септемдециллион, октодециллион и
новемдециллион, но это уже будут составные
названия, а нам были интересны именно
собственные названия чисел. Поэтому собственных
имён по этой системе, помимо указанных выше, ещё
можно получить лишь всего три
— вигинтиллион (от лат. viginti —
двадцать), центиллион (от лат. centum — сто) и
миллеиллион (от лат. mille — тысяча). Больше
тысячи собственных названий для чисел у римлян
не имелось (все числа больше тысячи у них были
составными). Например, миллион (1 000 000) римляне
называли decies centena milia, то есть «десять сотен
тысяч». А теперь, собственно, таблица:
Название | Число |
Вигинтиллион | 10 63 |
Центиллион | 10 303 |
Миллеиллион | 10 3003 |
Таким образом, по подобной системе числа
больше, чем 10 3003, у которого было бы
собственное, несоставное название получить
невозможно! Но тем не менее числа больше
миллеиллиона известны — это те самые
внесистемные числа. Расскажем, наконец-то, о них.
Название | Число |
Мириада | 10 4 |
Гугол | 10 100 |
Асанкхейя | 10 140 |
Гуголплекс | 10 10100 |
Второе число Скьюза | 10 10 10 1000 |
Мега | 2[5] (в нотации Мозера) |
Мегистон | 10 [5] (в нотации Мозера) |
Мозер | 2[2[5]] (в нотации Мозера) |
Число Грэма | G63 (в нотации Грэма) |
Стасплекс | G100 (в нотации Грэма) |
Самое маленькое такое число — это мириада
(оно есть даже в словаре Даля), которое означает
сотню сотен, то есть — 10 000.
Слово это, правда,
устарело и практически не используется, но
любопытно, что широко используется слово
«мириады», которое означает вовсе не
определённое число, а бесчисленное, несчётное
множество чего-либо.
Считается, что слово мириада
(англ. myriad) пришло в европейские языки из древнего
Египта.