Что такое натуральное число в математике определение
Что такое натуральное число в математике?
Все дети с ранних лет изучают математику. Поначалу она позволяет узнать простые вещи, легко применимые в жизни, но с течением времени задачи постоянно усложняются. Появляется и новая терминология, по которой не всегда можно понять, что имеется в виду. Например, что такое натуральное число в математике?
В древние времена люди не пользовались цифрами так, как делают это сейчас, однако счет всё равно был им необходим. Предметы сравнивались по количеству с чем-то, например, кто-то имел столько же ягод, сколько и пальцев на одной руке. Постепенно люди изобрели систему счета, а с ней появились и новые термины.
Что такое натуральное число в математике?
Это понятие относится к одним из самых старых, так как оно родилось из-за древней необходимости научиться считать количество обычных предметов. Что значит натуральное число? Чаще всего дается следующее определение – это числа, которые возникают при подсчете, причем происходит подобное естественным образом.
Отсюда берется и второе название этого термина – естественные числа. Своей последовательностью, расположенностью по возрастанию, они образуют натуральный ряд. Иначе говоря, все цифры, начиная с единицы, которые используются для подсчета предметов, являются натуральными.
Таким образом, существует самое малое натуральное число – им является единица. Наибольшего же не бывает, так как к любой цифре можно добавить ещё один. Ноль не входит в натуральный ряд, так как с его помощью нельзя ничего посчитать, хотя далеко не все ученые с этим согласны.
Определение натуральных чисел
Подобные цифры определяются двумя главными методами. Первый из них подразумевает перечисление всего имеющегося, а второй называет итоговое количество.
В этой цифре и заключается основная разница между двумя данными методами определения. В первом случае минимальным числом является единица, а во втором возможно и использование нуля. Математики так и не смогли прийти к единогласному решению о том, какой метод лучше, и стоит ли ставить ноль в один ряд с другими натуральными числами.
Как правило, применяется всё же первый вариант, оставляющий спорную цифру в стороне. Тем не менее, в некоторых трудах, вроде Бурбаки, используется другой подход. Помимо этого, ноль является неотъемлемой и широко применяемой частью в мире программирования.
Особенности натуральных чисел
Главное, о чем нужно помнить при упоминании подобных чисел, так это об их обязанности быть естественными. Они должны быть такими, чтобы с их помощью было возможно подсчитать количество каких-то предметов. Естественные числа должны быть доступными и понятными для всех.
По этой причине к ним не относятся отрицательные показатели и различные нецелые числа. Например, рациональное, обозначающееся в виде дроби, или вещественные, представляющее собой математический объект, не смогут стать частью натурального ряда.
Что такое натуральное число в математике? Все эти цифры принято обозначать буквой N. Её выбрали потому, что на латинском языке слово естественный пишется как naturalis, то есть начинается с литеры N. Число, подразумеваемое под этим обозначением, бесконечно.
Нередко для доказательства сложных теорем полезно помнить и о нуле. Он входит в расширенный натуральный ряд, который обозначают с помощью соответствующей цифры, приписанной снизу к букве N. Иногда вместо неё применяете Z, вновь с тем же маленьким нулем рядом.
Операции с натуральными числами
В математике существует понятие замыкания. Оно обозначает минимально возможное расширение какого-то множества, операции с которым не выходят за его пределы. В отношении натуральных чисел выделяется несколько таких замкнутых операций.
Иногда в данном вопросе рассматриваются ещё две операции. Их проблема заключается в том, что они применимы не для всех случаев. Иногда подобное может существовать, а иногда нет. К этим операциям относятся:
Как правило, наука сосредотачивается на первых двух операциях – сложении и вычитании. Интересно, что именно они способствуют созданию кольца целых чисел – это происходит через бинарные сложения и умножения.
Что стоит знать о натуральных числах?
Цифры, используемые для счета, не всегда были такими, как мы их знаем сегодня. Изначально применялось относительно схематическое изображение, постепенно сформировавшееся в римские цифры.
Современный же вариант зародился в Индии, примерно полторы тысячи лет назад. Впоследствии они были привезены в европейские страны арабами, за что и получили своё известное название – арабские цифры. Несмотря на то, что натуральных чисел может быть любое количество, цифр всего десять – от нуля и до девятки.
Если рассматривать натуральный ряд, то в нем каждое число будет отличаться от предыдущего или последующего на единицу, при том, что сам ряд бесконечен. Однако, в процессе счета появляется так называемая десятичная позиционная.
Под этим словом подразумевается тот факт, что когда числа доходят до десяти, они образуют новую единицу старшего разряда. Эти разряды бывают самыми разными – в частности, к ним относятся миллионы и миллиарды. В зависимости от их количества, разряды объединяют по классам.
Например, миллиарды могут исчисляться десятками или сотнями. Это будут разряды, но все они в целом образуют класс миллиардов. То же самое происходит и с разрядами миллионов, тысяч, сотен, десяток и единиц.
Натуральные числа
Натуральные числа: определение, операции, свойства
Определение
Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.
Последовательность натуральных чисел
Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.
Классы натуральных чисел
Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.
Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):
То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.
Сложение натуральных чисел
Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.
Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.
Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.
Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.
Вычитание натуральных чисел
Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».
При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.
Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.
Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.
Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.
Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.
Произведение натуральных чисел
Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.
Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.
Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.
Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.
При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.
Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.
Примечание
Деление натуральных чисел
Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).
Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).
Здесь 48 – делимое, 6 – делитель, 8 – частное.
Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.
где a – перемножаемое само на себя число, x – количество таких множителей.
Простые и составные натуральные числа
Всякое натуральное число, кроме 1, можно разделить как минимум на 2 числа – на единицу и на само себя. Исходя из этого критерия, натуральные числа разделяют на простые и составные.
Простыми считаются числа, которые делятся только на 1 и на само себя. Числа, которые делятся более чем на эти 2 числа, называют составными. Единица, делящаяся исключительно на саму себя, не относится ни к простым, ни к составным.
Простыми являются числа: 2,3,5,7,11,13,17,19 и т.д. Примеры составных чисел: 4 (делится на 1,2,4), 6 (делится на 1,2,3,6), 20 (делится на 1,2,4,5,10,20).
Всякое составное число можно разложить на простые множители. Под простыми множителями при этом понимаются его делители, являющиеся простыми числами.
Пример разложения на простые множители:
Делители натуральных чисел
Под делителем понимают число, на которое можно без остатка разделить данное число.
В соответствии с этим определением, простые натур.числа имеют 2 делителя, составные – больше 2 делителей.
Многие числа имеют общие делители. Общим делителем называется число, на которое данные числа делятся без остатка.
Особое значение имеет наибольший общий делитель (НОД). Это число, в частности, полезно уметь находить для сокращения дробей. Для его нахождения требуется разложить данные числа на простые множители и представить его как произведение их общих простых множителей, взятых в наименьших своих степенях.
Требуется найти НОД чисел 36 и 48.
Делимость натуральных чисел
Далеко не всегда представляется возможным «на глазок» определить, делится ли одно число на другое без остатка. В таких случаях полезным оказывается соответствующий признак делимости, то есть правило, по которому за считанные секунды можно определить, можно ли разделить числа без остатка. Для обозначения делимости используется знак «».
Наименьшее общее кратное
Эта величина (обозначается НОК) представляет собой наименьшее число, которое делится на каждое из заданных. НОК может быть найден для произвольного набора натуральных чисел.
НОК, как и НОД, имеет значительный прикладной смысл. Так, именно НОК нужно находить, приводя обыкновенные дроби к общему знаменателю.
НОК определяется путем разложения заданных чисел на простые множители. Для его формирования берется произведение, состоящее из каждого из встречающихся (хотя бы для 1 числа) простых множителей, представленных в максимальной степени.
Требуется найти НОК чисел 14 и 24.
Среднее арифметическое
Средним арифметических произвольного (но конечного) количества натуральных чисел является сумма всех этих чисел, разделенная на количество слагаемых:
Среднее арифметическое представляет собой некоторое усредненное значение для числового множества.
Даны числа 2,84,53,176,17,28. Требуется найти их среднее арифметическое.
Что такое натуральные числа
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы расскажем, что такое НАТУРАЛЬНЫЕ ЧИСЛА.
С ними человек встречается с самого рождения. Например, когда считает пальцы на руке – 1, 2, 3, 4, 5. Или отмечает праздники – 8 марта, 23 февраля, 9 мая, 31 декабря.
Натуральные числа — это.
Натуральные числа – это те числа, которые возникают при подсчете чего-либо. Например, одно яблоко, два яблока, пять яблок десять яблок и так далее.
Лучше даже представить, что вы подсчитываете людей, ибо их нельзя поделить на части, как большинство предметов (например, разрезов яблоко пополам).
Само слово «naturalis» в переводе с латинского означает «естественный».
Если число не является ни дробным, ни отрицательным, то его можно назвать натуральным.
Натуральными числами люди пользуются уже много тысячелетий. Просто у разных народов были разные системы исчисления. Например, римляне для счета использовали палочки. Так и появились знаменитые римские цифры – I, V, X, L, C, D и M.
А вот в Древнем Вавилоне использовали шестеричную систему. И до наших дней она дошла в виде часов, в которых 1 час равен 60 минутам, а 1 минута равна 60 секундам.
И наконец, современное обозначение цифр (0, 1, 2, 3, 4, 5 и так далее) принадлежит арабам, хотя за основу они взяли индийскую десятеричную систему и добавили к ней «ноль».
Натуральный ряд
Если расположить натуральные числа в порядке возрастания, то полученная цепочка будет называться натуральным рядом.
Он всегда появляется, когда нам нужно что-то посчитать поштучно. Например, в магазине мы обычно так делаем с овощами или фруктами, берем 5 морковок или 3 яблока. А уже только потом взвешиваем их, так как цены указаны за килограмм.
И конечно, именно так учатся считать школьники в первом классе. Например, если в задачке нарисовано пять флажков и вопрос звучит «сколько?», то любой ребенок будет считать «пальцем», отмечая каждый флажок и озвучивая натуральный ряд «один, два, три, четыре, пять».
Ну и тут же будет важным упомянуть, что количество натуральных чисел бесконечно. А значит, и натуральный ряд является бесконечным.
Это записано в основном законе натуральных чисел:
Каким бы большим не было натуральное число N, всегда найдется натуральное число N+1, которое будет больше.
Ноль — это натуральное число или нет
Натуральный ряд можно построить двумя способами:
Вы спросите, в чем разница? Во втором случае возможен вариант, когда нужного предмета может и не быть вовсе. И тогда его количество равно нулю.
То есть натуральный ряд начинается не с единицы, а с ноля. И выглядит вот так: 0, 1, 2, 3, 4, 5 и так далее.
Соответственно, в первом случае ноль нельзя считать натуральным числом. А во втором – можно. Интересно, что споры, какой подход более правильный, у математиков идут до сих пор. И сторонников обеих теорий примерно поровну.
Но у российских школьников проблем с выбором нет. В нашей стране придерживаются той версии, что ноль – это натуральное число.
Операции с натуральными числами
Школьники в младших классах на уроках математики имеют дело только с натуральными числами. Помимо самих цифр учатся и самым простым действиям:
Вот и все, что мы хотели рассказать о натуральных числах.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
А стоит ли себе забивать голову, какое число натуральное, а какое нет? Мир от этого не станет, ни проще, ни сложнее. Да и что неестественного в отрицательных числах? Если человеку не хватает денег, чтобы рассчитаться с долгами, то его имущество как раз уйдет в минус, отдал за долги всё, что было, но остался должен, значит необходимо ещё заработать, чтоб из минуса выйти в ноль.
Натуральные числа
Определение
Натуральные числа — это числа, которые используются для счета: 1, 2, 3, …, n, …
Множество натуральных чисел принято обозначать символом N (от лат. naturalis — естественный).
Существуют два исторических подхода к определению натуральных чисел:
Натуральные числа в десятичной системе счисления записываются с помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Множество натуральных чисел бесконечно, так как для любого числа n всегда найдется число m, которое больше n.
Операции над натуральными числами
К замкнутым операциям над натуральными числами (операциям в результате, которых получается натуральных чисел) относятся следующие арифметические операции:
Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как их результат не всегда будет натуральным числом.
Классы и разряды
Разряд — это положение (позиция) цифры в записи числа.
Низший разряд — самый правый. Старший разряд — самый левый.
Низший разряд — единицы, далее — десятки, сотни, тысячи, десятки тысяч, сотни тысяч, миллионы, десятки миллионов и т.д.
9 — единиц, 0 — десятков, 1 — сотя, 5 — тысяч, 3 — десятка тысяч, 4 — сотен тысяч, 2 — миллиона, 8 — десятков миллионов, 7 — сотен миллионов
Для удобства чтения, натуральных числа разбивают, на группы по три цифры в каждой начиная справа.
Класс — группа из трех цифр, на который разбито число, начиная справа. Последний класс может состоять из трех, двух или одной цифры.
Сравнение натуральных чисел
Сравнение натуральных чисел с разным количеством цифр
Среди натуральных чисел больше то, у которого больше цифр.
Сравнение натуральных чисел с равным количеством цифр
Сравнить числа поразрядно, начиная со старшего разряда. Больше то, у которого больше единиц в наивысшем одноименном разряде.
346 667 670 5 2 6 986
346 667 670 5 6 9 429
Натуральные числа: что такое натуральное число в математике
Содержание:
В математике существует несколько видов чисел. Одними из самых известных и широко применяемых как профессиональными математиками, так и обычными людьми являются натуральные.
Определение
Натуральные числа – это те, которые принято использовать при обычном подсчете каких-либо материальных предметов, событий и вообще всего, что может быть воспринято органами чувств человека. С этим понятием мы сталкиваемся с детства, потому что этот вид чисел наиболее широко используется в обычной жизни. Люди не обращают внимание на то, как часто им приходится использовать натуральный ряд. Вот наглядный пример. Вряд ли кто задает себе вопрос: что такое натуральное число в математике, глядя на обычные часы, по которым мы определяем какое количество часов и минут прошло с момента начала текущих суток. Основная задача, которую выполняют такие числа, заключается в указании количества чего-либо.
Ряд натуральных чисел
Теперь, когда мы усвоили, что значит натуральное число, поговорим о конкретных примерах. Натуральный ряд начинается с числа 1, а для его обозначения используется буква N. Сам ряд представляет собой числовую последовательность, в которой каждое следующее число больше предыдущего на одну единицу.
Другими словами, натуральные числа — это хорошо знакомая нам последовательность. И какие числа в нее входят понять несложно, вот примеры таких чисел:
2, 31, 55, 74, 153, 1507.
А вот ряд, который образуют числа от 1 до 9:
Поговорим про ноль
Относится ли 0 к натуральным числам? Прежде чем ответить на этот вопрос, вернемся к началу нашего изложения и вспомним, что значит натуральное число в математике. При обычном подсчете число 0 не применяют. Ведь он означает отсутствие чего-либо. Когда приходится констатировать факт, что мы чего-то не обнаружили, то никогда не употребляем словосочетания типа: 0 автомобилей или 0 бутылок. Вместо этого более привычной будет следующая фраза: «нет ни одной бутылки». Исходя из этого ответ на вопрос: входит ли 0 в натуральные числа, отпадает сам по себе. Однозначно, таковым его называть нельзя.
О самом большом числе
Как долго продолжается натуральный ряд? Числа в нем могут быть как одно- и двухзначными, так и трех-, четырехзначными и больше. Поэтому самое большое натуральное число в математике отсутствует, а ряд считают бесконечным.
Натуральные числа с нолями
С одной стороны, мы выяснили, что 0 не относится к натуральным числам. Но вполне естественно выглядит вопрос: 10 – натуральное число или нет? Безусловно, это число и любое другое с неограниченным количеством нолей относят к этому виду, потому что они могут применяться при подсчете или перечислении.
Действия, которые могут выполняться над натуральными числами
Над натуральными числами можно выполнять различные математические операции.
Также существует степень натурального числа, а запись выглядит следующим образом: ab, где: а – основание степени, а b – показатель. Например, 3 2 = 9.
Разряды и натуральные числа
Разрядом называют место нахождения цифры в числе. Каждый разряд называется индивидуально, они располагаются по старшинству – справа налево и от младшего к старшему. Количество цифр числа совпадает с количеством разрядов.
Самым низшим из разрядов являются единицы, а самый старший всегда соответствует крайней левой цифре.
Например, число 5 469 содержит четыре разряда:
Более высокие разряды называют:
Разряды объединяют в классы, каждый из которых включает три разряда:
Между классами для удобства чтения принято делать пробел.
Что такое натуральные значения в математике? Это любые значения, выраженные с использованием чисел натурального ряда. Еще один пример: 184 345 567 100 – в этом числе четыре класса: единицы, тысячи, миллионы и миллиарды.