Что такое неопределенность измерения росаккредитации
Что такое неопределенность измерения росаккредитации
ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Руководство по выражению неопределенности измерения
Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement
____________________________________________________________________
Текст Сравнения ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008 с
ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2012-10-01
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ») и Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2011 г. N 555-ст
Аннотация к Руководству ИСО/МЭК 98-3:2008
Руководство устанавливает общие правила оценивания и представления неопределенности измерения применительно к широкому спектру измерений. Основой Руководства является Рекомендация 1 (CI-1981) Международного комитета мер и весов (МКМВ) и Рекомендация INC-1 (1980) Рабочей группы по неопределенности. Рабочая группа по неопределенности была организована Международным бюро мер и весов (МБМВ) по поручению МКМВ. Рекомендация, разработанная Рабочей группой, является единственной рекомендацией в отношении выражения неопределенности измерения, одобренной межправительственной организацией.
Руководство разработано объединенной рабочей группой экспертов, назначенных МБМВ, ИСО, МЭК и МОЗМ.
Следующие семь организаций* поддержали разработку Руководства, которое публикуется от их имени:
* Примечание к изданию 2008 г.: В 2005 г. к указанным семи международным организациям присоединилось Международное сотрудничество по аккредитации лабораторий (ИЛАК).
— Международное бюро мер и весов (МБМВ);
— Международная электротехническая комиссия (МЭК);
— Международная федерация клинической химии (МФКХ)*;
* Примечание к изданию 2008 г.: В 1995 г. наименования трех международных организаций были изменены. Теперь эти организации имеют следующие наименования: Международная федерация клинической химии и лабораторной медицины (МФКХ); Международная организация по теоретической и прикладной химии (ИЮПАК); Международная организация по теоретической и прикладной физике (ИЮПАП).
— Международная организация по стандартизации (ИСО);
— Международный союз теоретической и прикладной химии (ИЮПАК)*;
— Международный союз теоретической и прикладной физики (ИЮПАП)*;
* Примечание к изданию 2008 г.: В 1995 г. наименования трех международных организаций были изменены. Теперь эти организации имеют следующие наименования: Международная федерация клинической химии и лабораторной медицины (МФКХ); Международная организация по теоретической и прикладной химии (ИЮПАК); Международная организация по теоретической и прикладной физике (ИЮПАП).
— Международная организация законодательной метрологии (МОЗМ).
Пользователей Руководства приглашают присылать свои замечания и предложения в любую из семи указанных международных организаций, чьи адреса указаны на обратной странице обложки*.
* Примечание к изданию 2008 г.: В настоящее время ссылка на адреса восьми международных организаций, поддержавших разработку Руководства, приведены на сайте Объединенного комитета по разработке руководств в области метрологии (JCGM) http://www.bipm.org/en/committees/jc/jcgm.
Предисловие к Руководству ИСО/МЭК 98-3:2008
В 1978 г., признавая отсутствие международного единства по вопросу выражения неопределенности измерения, наиболее авторитетная международная организация в области метрологии МКМВ обратилась в МБМВ с просьбой рассмотреть эту проблему совместно с национальными метрологическими лабораториями и подготовить соответствующую рекомендацию.
МБМВ подготовило подробную анкету и разослало ее в 32 национальные метрологические лаборатории, заинтересованные в разрешении данной проблемы, а также, для сведения, в пять международных организаций. К началу 1979 г. были получены ответы из 21 лаборатории [1]. Почти в каждом ответе подчеркивалась важность установления признанной на международном уровне процедуры выражения неопределенности измерения и объединения частных составляющих неопределенности в одну общую неопределенность. Однако в том, какой должна быть эта процедура, единства достигнуто не было. Для решения этого вопроса МБМВ организовало встречу, на которой присутствовали представители 11 национальных метрологических лабораторий. Эта Рабочая группа по неопределенности разработала Рекомендацию INC-1 (1980) «Выражение экспериментальных неопределенностей» [2]. Рекомендация была одобрена МКМВ в 1981 г. [3] и подтверждена в 1986 г. [4].
Задачу разработки подробного Руководства, основанного на подготовленной Рабочей группой Рекомендации (которая является, скорее, краткой формулировкой общих принципов, чем детализированной инструкцией), МКМВ передал Международной организации по стандартизации ИСО, которая могла в большей степени учесть потребности, возникающие из широких интересов промышленности и торговли.
Ответственность за решение указанной задачи была возложена на Техническую консультативную группу по метрологии (ИСО/ТАГ 4), целью которой, в том числе, является координация разработки руководств в области измерений, представляющих общий интерес для ИСО и других шести организаций, которые вместе с ИСО участвуют в работе ИСО/ТАГ 4: МЭК (партнера ИСО в области международной стандартизации); МКМВ и МОЗМ (двух всемирно признанных международных организаций в области метрологии); ИЮПАК и ИЮПАП (двух международных союзов в области физики и химии) и МФКХ.
ИСО/ТАГ 4, в свою очередь, учредила Рабочую группу 3 (ИСО/ТАГ 4/РГ 3), состоящую из экспертов, предложенных МБМВ, МЭК, ИСО и МОЗМ и утвержденных председателем ИСО/ТАГ 4. Перед ней была поставлена следующая задача: разработать руководящий документ, базирующийся на Рекомендации Рабочей группы по неопределенности МБМВ, в котором были бы сформулированы правила выражения неопределенности измерения и который использовался бы организациями и службами в области стандартизации, калибровки, аккредитации лабораторий, а также в метрологии.
Целью данного руководства должно было стать:
— обеспечение предоставления полной информации о том, как получены утверждения о неопределенности измерений;
— создание основы для международного сопоставления результатов измерений.
Настоящее первое издание Руководства ИСО/МЭК 98-3 отменяет и заменяет «Руководство по выражению неопределенности измерений», опубликованное совместно МБМВ, МЭК, МФКХ, ИСО, ИЮПАК, ИЮПАП и МОЗМ в 1993 г. и переизданное с исправлениями в 1995 г.*
* Примечание к изданию 2008 г.: При разработке издания 2008 г. в версию 1995 г. были внесены необходимые исправления, подготовленные JCGM/WG 1. Эти исправления затрагивают пункты 4.2.2, 4.2.4, 5.1.2, В.2.17, С.3.2, С.3.4, Е.4.3, Н.4.3, Н.5.2.5 и Н.6.2.
0.1 Сообщению о результате измерения физической величины должна сопутствовать некоторая количественная характеристика качества результата измерений, чтобы при использовании данного результата возможно было оценить его достоверность. Без такой информации результаты измерений нельзя сопоставить ни друг с другом, ни со значениями, указанными в технических условиях или стандарте. Это требует наличия простой в применении, понятной и общепризнанной процедуры, позволяющей характеризовать качество результата измерений, т.е. оценивать и выражать его неопределенность.
0.2 Понятие неопределенности как количественной характеристики является относительно новым в истории измерений, хотя понятия погрешности и анализа погрешностей давно используются в метрологической практике. В настоящее время общепризнанно, что после того, как найдены оценки всех ожидаемых составляющих погрешности и в результат измерения внесены соответствующие поправки, все еще остается некоторая неопределенность в отношении полученного результата, т.е. сомнение в том, насколько точно он соответствует значению измеряемой величины.
0.3 Подобно тому, как Международная система единиц (СИ), будучи системой практически универсального использования, привнесла согласованность во все научные и технические измерения, международное единство в оценивании и выражении неопределенности измерения обеспечило бы должное понимание и правильное использование широкого спектра результатов измерений в науке, технике, торговле, промышленности и законодательстве. В условиях международного рынка чрезвычайно важно, чтобы метод оценивания и выражения неопределенности был единым во всем мире, а результаты измерений, проведенных в разных странах, были легко сопоставимы между собой.
0.4 Идеальный метод оценивания и выражения неопределенности результата измерения должен быть
— универсальным, т.е. применимым ко всем видам измерений и всем видам входной информации, используемой в измерениях.
Величина, непосредственно используемая для выражения неопределенности, должна быть:
— внутренне согласованной, т.е. непосредственно выводиться из составляющих ее компонентов и не зависеть от того, как эти компоненты группируются и как они делятся на подкомпоненты;
— переносимой, т.е. допускающей непосредственное использование неопределенности, полученной для одного результата измерения, в качестве составляющей неопределенности другого измерения, в котором используется первый результат.
Кроме того, зачастую в промышленности и торговле, а также в здравоохранении и в сфере обеспечения безопасности результат измерения должен быть представлен с указанием охватывающего его интервала, в пределах которого, как можно ожидать, будет находиться большая часть распределения значений, которые обоснованно могут быть приписаны измеряемой величине. Таким образом, идеальный метод оценивания и выражения неопределенности измерения должен предоставлять возможность указать такой интервал, в частности, который был бы действительно близок к доверительному интервалу с заданным уровнем доверия.
0.5 Подход, на котором базируется настоящий руководящий документ, изложен в Рекомендации INC-1 (1980) [2] Рабочей группы по неопределенности, организованной МБМВ по инициативе МКМВ (см. предисловие). Данный подход, обоснованность которого обсуждается в приложении Е, соответствует всем вышеуказанным требованиям. Этого нельзя сказать о большинстве других используемых в настоящее время методах. Рекомендация INC-1 (1980) была одобрена и вновь подтверждена МКМВ его собственными Рекомендацией 1 (CI-1981) [3] и Рекомендацией 1 (CI-1986) [4], перевод которых приведен в приложении А (разделы А.2 и А.3 соответственно). Поскольку основой для настоящего Руководства остается Рекомендация INC-1 (1980), ее перевод также приведен в приложении А (раздел А.1)*.
* В оригинале Рекомендация INC-1 (1980) приведена дважды: на французском языке в А.1 и на английском языке в 0.7. Во избежание дублирования подраздел 0.7 Введения из настоящего стандарта исключен.
1 Область применения
— обеспечения требуемого качества продукции и контроля качества на производстве;
— проверки выполнения требований законов и нормативных документов;
— проведения фундаментальных и прикладных исследований и разработок в науке и технике;
— калибровки эталонов и приборов, а также проведения испытаний в соответствии с национальной схемой обеспечения единства измерений (для обеспечения прослеживаемости к национальным эталонам);
— разработки, поддержания и сличения международных и национальных эталонов единиц физических величин, включая стандартные образцы веществ и материалов.
1.2 Настоящее Руководство, в первую очередь, рассматривает выражение неопределенности измерения хорошо определенной физической величины, характеризуемой единственным значением. Если предмет изучения нельзя охарактеризовать единственным значением, а лишь некоторым распределением значений или если он характеризуется зависимостью от одного или более параметров (например, представляет собой временной процесс), то измеряемыми величинами, требуемыми для его описания, являются параметры распределения или зависимости.
1.3 Настоящее Руководство распространяется также на оценивание и выражение неопределенности результатов теоретических расчетов и испытаний, методов измерений, анализа сложных систем. Поскольку в таких приложениях результат оценивания величины и его неопределенность могут быть умозрительными и полностью основанными на гипотетических данных, то термин «результат измерений», используемый в настоящем Руководстве, следует толковать в этом более широком контексте.
1.4 Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения и не содержит подробных указаний для конкретных измерений. В нем не рассматривается также вопрос, каким образом полученная оценка неопределенности результата конкретного измерения может быть использована в дальнейшем, например, для вывода о сопоставимости данного результата с результатами аналогичных измерений, для установления допусков в технологическом процессе, для заключения о соблюдении или несоблюдении установленных требований безопасности. Подобные вопросы, связанные со специфическими областями измерений или с конкретным использованием количественных оценок неопределенности, могут рассматриваться в других стандартах, основанных на настоящем Руководстве*. Такие стандарты могут представлять собой упрощенные версии настоящего Руководства, но они должны содержать в себе все необходимые сведения, исходя из требуемого уровня точности и сложности измерений, на которые они распространяются.
Что такое неопределенность измерения росаккредитации
ГОСТ Р ИСО 21748-2012
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
РУКОВОДСТВО ПО ИСПОЛЬЗОВАНИЮ ОЦЕНОК ПОВТОРЯЕМОСТИ, ВОСПРОИЗВОДИМОСТИ И ПРАВИЛЬНОСТИ ПРИ ОЦЕНКЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ
Statistical methods. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation
Дата введения 2013-12-01
Предисловие
1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1419-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 21748:2010* «Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений» (ISO 21748:2010 «Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation», IDT).
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
6 ПЕРЕИЗДАНИЕ. Июль 2019 г.
Введение
Знание неопределенности результатов измерений крайне важно для принятия решений. Без количественных оценок неопределенности невозможно решить, превышают ли наблюдаемые отклонения результатов измерений заданную изменчивость, соответствуют ли объекты испытаний установленным требованиям. При отсутствии информации о неопределенности результатов измерений велика вероятность ошибочного принятия решений, которые могут привести к непредусмотренным расходам в процессе производства, неправильным судебным выводам, неблагоприятным последствиям для здоровья человека или неблагоприятным социальным последствиям.
ИСО/МЭК 17025:2005 «Общие требования к компетентности испытательных и поверочных лабораторий» (ISO/IEC 17025:2005 «General requirements for the competence of testing and calibration laboratories»).
ИСО 5725-2:1994 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения» [ISO 5725-2:1994 «Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method»]
Общий подход, используемый в настоящем стандарте, требует, чтобы:
— оценки повторяемости, воспроизводимости и правильности метода, полученные при межлабораторном исследовании в соответствии с ИСО 5725-2:1994, могли быть получены из опубликованной информации об использовании метода испытаний. Эти оценки позволяют получать внутрилабораторные и межлабораторные составляющие неопределенности, а также оценку неопределенности результатов, связанную с правильностью метода;
— лаборатория подтвердила на основе проверок присущих ей смещения и прецизионности, что качество выполнения ею метода испытаний соответствует установленным требованиям к методу испытаний, то есть подтвердила, что опубликованные данные о применении метода согласуются с результатами измерений и испытаний, полученными лабораторией;
— любые воздействия на результаты измерений, не охваченные межлабораторными исследованиями, были идентифицированы, а отклонения, вызванные этими воздействиями, определены количественно.
Оценку неопределенности определяют объединением оценок дисперсии, полученных в результате межлабораторных исследований в соответствии с GUM.
Для контроля полного понимания метода разброс результатов, полученных в межлабораторном исследовании, полезно сравнивать с оценками неопределенности измерений, полученными с использованием процедур GUM. Такие сравнения будут более эффективны при использовании последовательных оценок одного и того же параметра, полученных на основе данных совместных исследований.
Применяемый в настоящем стандарте международный стандарт разработан Техническим комитетом ИСО/ТС 69 «Применение статистических методов».
1 Область применения
В настоящем стандарте приведено руководство для:
— оценки неопределенности измерений на основе данных, полученных в результате исследований, проводимых в соответствии с ИСО 5725-2;
— сравнения результатов, полученных в межлабораторном исследовании, с оценками неопределенности измерений исследуемого параметра, полученными с использованием принципов переноса неопределенности (см. раздел 13).
В ИСО 5725-3 установлены дополнительные модели для анализа промежуточной прецизионности. Однако оценка неопределенности с использованием этих моделей не включена в настоящий стандарт, хотя этот общий подход может быть применен к более широкой группе моделей.
Настоящий стандарт применим во всех областях измерений и испытаний, когда должна быть определена неопределенность результатов.
В настоящем стандарте не приведено описание применения данных повторяемости в отсутствии данных воспроизводимости.
В настоящем стандарте использовано предположение, что признанные значимыми систематические воздействия устранены либо путем численной корректировки результатов, включенной в метод измерений, либо путем анализа и устранения причины воздействий.
В настоящем стандарте приведено общее руководство. Представленный подход к оценке неопределенности применим во многих случаях, однако возможно применение и других методов.
В общем случае информация, приведенная в настоящем стандарте, относительно результатов, методов и процессов измерений, относится также к результатам, методам и процессам испытаний.
2 Термины и определения
В настоящем стандарте применены термины по ИСО 5725-3, а также следующие термины с соответствующими определениями:
2.1 смещение (bias): Разность между математическим ожиданием результатов наблюдений испытаний и измерений и истинным значением.
1 Смещение представляет собой систематическую ошибку в противоположность случайной ошибке. Могут существовать одна или несколько причин, вызывающих систематическую ошибку. Большее систематическое отклонение от истинного значения соответствует большему значению смещения.
Применительно к измерениям под ошибкой следует понимать «погрешность».
3 На практике применяют вместо истинного значения принятое опорное значение.
[ИСО 3534-2:2006, определение 3.3.2]
2.2 суммарная стандартная неопределенность (combined standard uncertainty); : Стандартная неопределенность результата измерений, полученного через значения ряда других величин, равная положительному квадратному корню из суммы членов, представляющих собой дисперсии или ковариации этих величин, взятых с весами, соответствующими степени влияния этих величин на результат измерений.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.4]
2.3 коэффициент охвата (coverage factor); : Числовой коэффициент, на который умножают суммарную стандартную неопределенность при определении расширенной неопределенности.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.6]
2.4 расширенная неопределенность (expanded uncertainty); : Величина, определяющая интервал вокруг математического ожидания результатов измерений, охватывающий большую долю распределения значений, которые обоснованно могут быть приписаны измеряемой величине.
1 Долю распределения, охватывающую интервалом, характеризует вероятность охвата или уровень доверия интервала.
2 Чтобы связать определенный уровень доверия с интервалом расширенной неопределенности, необходимы предположения (в явной или неявной форме) о форме распределения вероятностей результатов измерений и их суммарной стандартной неопределенности. Уровень доверия, который соответствует этому интервалу, может соответствовать действительности только в той степени, в какой могут быть справедливы предположения.
3 В рекомендациях [20] расширенную неопределенность называют общей неопределенностью.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.5]
2.5 прецизионность (precision): Близость независимых результатов наблюдений, полученных при определенных принятых условиях.
1 Прецизионность зависит от распределения случайных ошибок и не связана ни с истинным, ни с заданным значениями.
2 Меру прецизионности обычно выражают в терминах изменчивости и вычисляют как стандартное отклонение результатов наблюдений (испытаний/измерений). Малой прецизионности соответствует большое стандартное отклонение.
3 Количественные меры прецизионности существенным образом зависят от принятых условий. Условия повторяемости и условия воспроизводимости являются примерами крайних вариантов принятых условий.
[ИСО 3534-2:2006, определение 3.3.4]
2.6 повторяемость (repeatability): Прецизионность в условиях повторяемости.
[ИСО 3534-2:2006, определение 3.3.5]
2.7 условия повторяемости (repeatability conditions): Условия наблюдений, при которых независимые результаты наблюдений (испытаний/измерений) получают одним и тем же методом на идентичных объектах наблюдений, в одной и той же лаборатории, с применением одних и тех же средств испытаний/измерений, одним и тем же оператором, с использованием одного и того же оборудования в течение короткого интервала времени.
— процедур измерений или испытаний;
— измерительного и испытательного оборудования, используемых в одних и тех же условиях;
Что такое неопределенность измерения росаккредитации
ГОСТ Р 54500.1-2011/Руководство ИСО/МЭК 98-1:2009
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Введение в руководства по неопределенности измерения
Uncertainty of measurement. Part 1. Introduction to guides on uncertainty in measurement
Дата введения 2012-10-01
Сведения о стандарте
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ») и Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2011 г. N 555-ст
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА
Предисловие к Руководству ИСО/МЭК 98-1:2009
В 1997 г. семью международными организациями, подготовившими в 1993 г. «Руководство по выражению неопределенности измерения» (GUM) и «Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины» (VIM), был образован Объединенный комитет по руководствам в метрологии (JCGM), возглавляемый директором Международного бюро мер и весов (МБМВ), который принял на себя ответственность за указанные два документа от Технической консультативной группы по метрологии ИСО (ИСО/ТАГ 4).
Учредителями JCGM помимо МБМВ являются Международная электротехническая комиссия (МЭК), Международная федерация клинической химии и лабораторной медицины (МФКХ), Международное сотрудничество по аккредитации лабораторий (ИЛАК), Международная организация по стандартизации (ИСО), Международный союз теоретической и прикладной химии (ИЮПАК), Международный союз теоретической и прикладной физики (ИЮПАП) и Международная организация по законодательной метрологии (МОЗМ).
В рамках JCGM созданы две Рабочие группы (РГ). Задачей РГ 1 «Выражение неопределенности измерения» является содействие использованию Руководства (GUM), подготовка дополнений к Руководству и иных документов, способствующих его широкому применению. Задачей РГ 2 «Рабочей группы по Международному словарю основных и общих терминов в метрологии (VIM)» является пересмотр VIM и содействие его применению. Более подробную информацию о деятельности JCGM можно найти на сайте www.bipm.org.
Настоящий документ является частью серии документов JCGM под общим названием «Оценивание данных измерений», включающей в себя:
— JCGM 100:2008 Оценивание данных измерений. «Руководство по выражению неопределенности измерения (GUM)» (см. раздел 2 настоящего стандарта);
— JCGM 101:2008 Оценивание данных измерений. Дополнение 1 к «Руководству по выражению неопределенности измерения». Трансформирование распределений с использованием метода Монте-Карло (см. раздел 2 настоящего стандарта);
— JCGM 102 Оценивание данных измерений. Дополнение 2 к «Руководству по выражению неопределенности измерения». Модели с произвольным числом выходных величин;
— JCGM 103 Оценивание данных измерений. Дополнение 3 к «Руководству по выражению неопределенности измерения». Моделирование;
— JCGM 104 Оценивание данных измерений. Введение к «Руководству по выражению неопределенности измерения» и сопутствующим документам (настоящий стандарт);
— JCGM 105 Оценивание данных измерений. Понятия и основные принципы;
— JCGM 106 Оценивание данных измерений. Роль неопределенности измерения в оценке соответствия;
— JCGM 107 Оценивание данных измерений. Применения метода наименьших квадратов.
Введение
Данные о неопределенности измерения должны всегда приниматься во внимание при оценке соответствия результата измерения его целям. Покупатель в овощной лавке не будет возражать, если при покупке килограмма фруктов весы покажут отклонение от истинного значения в пределах, допустим, двух граммов. В то же время размеры деталей гироскопов, используемых в системах навигации воздушных судов, контролируют до миллионных долей.
Измерения присутствуют практически во всех видах человеческой деятельности, включая промышленность, торговлю, науку, здравоохранение, обеспечение безопасности и охрану окружающей среды, помогая принимать обоснованные решения. Знание неопределенности измерения позволяет сопоставлять результат измерения с установленными требованиями при оценке соответствия, находить вероятность принятия неправильного решения и с ее учетом управлять возникающими рисками.
Настоящий документ служит введением в концепцию неопределенности измерения, в GUM и сопутствующие документы, указанные в предисловии. Для оценивания неопределенности используется вероятностный подход. Аббревиатуры, использованные в настоящем документе, приведены в приложении А.
В последующих изданиях JCGM 200 (VIM) предполагается дать четкое разграничение в применении термина «погрешность» к величине погрешности и к значению погрешности. То же самое относится к термину «показание». Поскольку в действующем издании JCGM 200:2008 такого разграничения нет, то данный вопрос рассматривается в настоящем документе.
1 Область применения
Как и JCGM 100, настоящий документ в первую очередь рассматривает выражение неопределенности измерения хорошо определенной величины, характеризуемой единственным истинным значением (JCGM 200, словарная статья 2.11, примечание 3) и называемой измеряемой величиной (JCGM 200, словарная статья 2.3). В JCGM 100 приведены обоснования, почему не рекомендуется использовать термин «истинное значение», однако в настоящем документе этот термин рассматривается для предотвращения возможных неясностей или путаницы с его применением.
Дополнения к GUM и другие сопутствующие документы разрабатываются JCGM с целью оказать помощь в понимании принципов, установленных в GUM, и расширить сферу его применения. Дополнения к GUM вместе с другими сопутствующими документами создают область применения концепции неопределенности измерения, существенно превышающую ту, что установлена GUM.
Настоящий документ знакомит с понятием неопределенности измерения, с GUM и дополнениями к GUM, а также документами, поддерживающими GUM. Он ограничивается преимущественно вопросами измерения величин, которые могут быть охарактеризованы непрерывными переменными, такими как длина, температура, время, количество вещества.
Настоящий документ распространяется на следующие сферы деятельности (но не ограничивается ими):
— деятельность калибровочных и испытательных лабораторий в промышленности, а также в сферах здравоохранения, обеспечения безопасности и охраны окружающей среды;
— деятельность органов по аккредитации, а также органов контроля, надзора и оценки соответствия.
Настоящий документ может быть использован при проектировании изделий, поскольку установление характеристик изделий с учетом последующих требований к контролю и связанными с ним измерениями позволит избежать завышенных технологических требований при их производстве. Применение настоящего документа в сфере высшего образования позволит включать в программы по различным дисциплинам разделы по неопределенности измерения. Результатом должна стать лучшая подготовленность специалистов к восприятию концепции неопределенности измерения и применению ее в разных измерительных задачах, что, в конечном итоге, послужит улучшению качества измерений в целом.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие документы*:
3 Понятие неопределенности измерения
3.1 Цель измерения состоит в получении информации об интересующей величине, называемой измеряемой величиной (JCGM 200, словарная статья 2.3). Измеряемой величиной может быть объем сосуда, разность потенциалов на клеммах батареи или массовая концентрация свинца в колбе с водой.
3.2 Абсолютно точных измерений не существует. При проведении измерения его результат зависит от измерительной системы (JCGM 200, словарная статья 3.2), методики измерения, квалификации оператора, внешних условий и других факторов [1]. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, при достаточной разрешающей способности измерительной системы, позволяющей различать близкие показания (JCGM 200, словарная статья 4.1), эти показания (полученные значения измеряемой величины [JCGM 200, словарная статья 2.10]) всякий раз будут разными. Показания рассматривают как мгновенные реализации соответствующей случайной величины.
3.3 Разброс показаний позволяет судить о качестве проведенного измерения. Их среднее должно обеспечить значение оценки (ИСО 3534-1, словарная статья 1.31) истинного значения величины (JCGM 200, словарная статья 2.11), которая в общем случае будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины. Однако эта информация в большинстве случаев не будет достаточной.
3.5 Существуют два вида погрешности измерения: систематическая и случайная (JCGM 200, словарная статья 2.19). Систематическая погрешность [значение оценки которой называют смещением при измерении (JCGM 200, словарная статья 2.18)] проявляется в том, что полученное значение измеряемой величины содержит сдвиг. Случайная погрешность проявляется в том, что при повторении измерения полученное значение измеряемой величины в большинстве случаев будет отличаться от предыдущего. Случайность заключается в том, что последующие значения измеряемой величины нельзя точно предсказать по предыдущим (если бы такая возможность существовала, то в результат измерений можно было бы внести соответствующую поправку). В общем случае каждый из видов погрешности может быть обусловлен действием нескольких факторов.
3.7 Одним из основных исходных положений подхода GUM является утверждение о возможности охарактеризовать качество измерения, исходя из единообразного обращения с систематической и случайной погрешностями, с предложением метода, как это сделать (см. 7.2). Этот метод возвращает к исходной информации, какой она была до применения «анализа погрешностей», и подводит под нее вероятностную основу с помощью концепции неопределенности измерения.
3.8 Другое базовое положение GUM состоит в утверждении, что нельзя установить, насколько хорошо известно единственное истинное значение величины, а можно только сформулировать степень нашей уверенности в том, что оно известно. Таким образом, неопределенность измерения можно представить через степень уверенности. Такая неопределенность будет отражать неполноту знания об измеряемой величине. Понятие «уверенности» очень важно, т.к. оно перемещает метрологию в сферу, где результат измерения должен рассматриваться и численно определяться в терминах вероятностей, которые выражают степень доверия.