Что такое неравенство в математике 5 класс определение
Понятие неравенства, связанные определения.
Обратной стороной равенства выступает неравенство. В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.
Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.
Навигация по странице.
Что такое неравенство?
Понятие неравенства, как и понятие равенства, связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и
— одинаковые, про них можно сказать, что они равные. А вот два объекта
и
отличаются, то есть, они не равны или неравные.
Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.
Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и
. Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.
В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.
Не равно, больше, меньше
Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше, а какая – меньше.
Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел, отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.
Запись неравенств с помощью знаков
Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.
Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:
НЕРАВЕНСТВО
— отношение, связывающее два числа и
посредством одного из знаков:
(меньше),
(меньше или равно),
(больше),
(больше или равно),
(неравно), то есть
Иногда несколько Н. записываются вместе, напр.
Н., в к-рые входят величины, принимающие различные числовые значения, могут быть верны для одних значений этих величин и неверны для других. Так, неравенство верно при
и неверно при x=2. Для Н. этого типа возникает вопрос об их решении, т. е. об определении границ, в к-рых следует брать входящие в Н. величины для того, чтобы Н. были справедливы. Так, переписывая неравенство
в виде:
замечают, что оно будет верно для всех х, удовлетворяющих одному из следующих неравенств:
к-рые и являются решением данного Н.
Ниже приводятся нек-рые Н., выполняющиеся тождественно в той или иной области изменения входящих в них переменных.
1) Неравенство для модулей. Для любых действительных или комплексных чисел
справедливо Н.
. 2) Неравенство для средних. Наиболее известны Н., связывающие гармоническое, геометрическое, арифметическое и квадратичное средние:
здесь все числа — положительны.
3) Неравенства для сумм и их интегральные аналоги. Таковы, напр., Вуняковского неравенство, Гёльдера неравенство, Гильберта неравенство, Коши неравенство.
4) Неравенства для степеней чисел. Наиболее известно здесь Минковского неравенство и его обобщения на случай рядов и интегралов.
5) Неравенства для некоторых классов последовательностей и функций. Примерами могут служить Чебышева неравенство для монотонных последовательностей и Иенсена неравенство для выпуклых функций.
7) Линейные неравенства. Рассматривается система Н. вида
Совокупность решений этой системы Н. представляет собой нек-рый выпуклый многогранник в n-мерном пространстве (); задача теории линейных неравенств состоит в том, чтобы изучить свойства этого многогранника.
Лит.:Харди Г. Г., Литтльвуд Д ж. Е., Полиа Г., Неравенства, пер. с англ., М., 1948; Беккен6ах Э., Беллмав Р., Неравенства, пер. с англ., М., 1965.
По материалам одноименной статьи из БСЭ-3.
Числовые неравенства и их свойства
С неравенствами мы познакомились в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.
Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.
Числовые неравенства: определение, примеры
Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.
Свойства числовых неравенств
Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».
Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что
Определения будут использованы при доказательствах свойств числовых неравенств.
Основные свойства
Рассмотрим 3 основные неравенства. Использование знаков и > характерно при свойствах:
Перед тем, как перейти к следующему свойству, заметим, что при помощи ассиметричности можно читать неравенство справа налево и наоборот. Таким образом, числовое неравенство можно изменять и менять местами.
Аналогичным образом доказывается вторая часть со свойством транизитивности.
Доказательство производится аналогичным образом.
Другие важные свойства числовых неравенств
Для дополнения основных свойств неравенств используются результаты, которые имеют практическое значение. Применяется принцип метода оценка значений выражений, на которых и базируются принципы решения неравенств.
Для удобного представления дадим соответствующее утверждение, которое записывается и приводятся доказательства, показываются примеры использования.
Теперь сформулируем вытекающие два результата, которые используются при решении неравенств:
Все пункты объединяет то, что действия над частями неравенства дают верное неравенство на выходе. Рассмотрим свойства, где изначально имеется несколько числовых неравенств, а его результат получим при сложении или умножении его частей.
Заметим, что при записи неравенств имеются неположительные числа, тогда их почленное умножение приводит к неверным неравенствам.
Свойства числовых неравенств
Рассмотрим ниже свойства числовых неравенств.
Понятие неравенства, связанные определения
Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.
Определение неравенства
Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, и
— одинаковые объекты или равные.
и
— объекты, отличающиеся друг от друга или неравные.
Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.
Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: и
. Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.
В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.
Не равно, больше, меньше
В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.
Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.
Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).
Запись неравенств с помощью знаков
Существуют общепринятые обозначения для записи неравенств:
Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.
Строгие и нестрогие неравенства
Знаки строгих неравенств – это знаки «больше» и «меньше»: > и Неравенства, составленные с их помощью – строгие неравенства.
Верные и неверные неравенства
Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным.
Приведем простые примеры для наглядности:
Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.
Или такое сравнение:
Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.
Свойства неравенств
Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.
Опишем свойства, соответствующие знакам «больше» или «меньше»:
Знакам нестрогих неравенств также присущи некоторые свойства:
Двойные, тройные и т.п. неравенства
Алгебра. Урок 8. Неравенства, системы неравенств.
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
Смысл выколотой точки в том, что сама точка в ответ не входит.
Смысл жирной точки в том, что сама точка входит в ответ.
Таблица числовых промежутков
Неравенство | Графическое решение | Форма записи ответа |
---|---|---|
x c |