Что такое несимметричная нагрузка

Что такое симметричная и несимметричная нагрузка

В нормально функционирующей трехфазной сети линейные напряжения (напряжения между каждой парой фазных проводников) равны друг другу по величине и различаются между собой по фазе на 120 градусов. Соответственно и фазные напряжения (напряжения между каждым фазным проводником и нейтральным проводником) равны между собой по величине и имеют аналогичные различия по фазе.

Как следует из вышесказанного, углы сдвига фаз между данными напряжениями равны между собой. Это и называется «симметричная трехфазная система напряжений».

Если к такой сети подключить симметричную нагрузку, то есть такую трехфазную нагрузку, при которой токи каждой из фаз будут равны по величине и по фазе, то такая нагрузка создаст симметричную систему токов (с одинаковыми углами сдвига фаз между ними). Это возможно при условии, когда во всех трех фазах нагрузки имеются одинаковые реактивные и активные сопротивления, то есть Za = Zb = Zc.

Поэтому и фазные токи оказываются в данных условиях равными по величине и по углу сдвига фаз между ними. Примеры симметричных нагрузок: трехфазный асинхронный двигатель, три одинаковые лампы накаливания — каждая на своей фазе, симметрично нагруженный трехфазный трансформатор и т.д.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Рассмотрим векторную диаграмму токов симметричной трехфазной нагрузки. Здесь легко увидеть, что геометрическая сумма векторов трех фазных токов обращается в ноль. Это значит, что при симметричной нагрузке ток нейтрального проводника будет равен нулю, и практически надобность в его использовании отпадает.

Если же к этой трехфазной сети с симметричной системой напряжений подключить несимметричную нагрузку, то есть такую нагрузку, при которой комплексные сопротивления нагрузки в каждой фазе различны (Za ≠ Zb ≠ Zc), то нагрузка создаст систему токов, которые будут различаться между собой по величине и по направлению (по сравнению с диаграммой токов, характерной для симметричной нагрузки). Значения этих фазных токов можно найти по закону Ома.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

И тогда геометрическая сумма токов не обратится в ноль, а значит и в нейтральном проводнике будет иметь место переменный ток, поэтому нейтральный проводник в данном случае необходим. Примеры несимметричных нагрузок: лампы накаливания разной мощности в трех фазах, несимметрично нагруженный трехфазный трансформатор, нагрузки с разными коэффициентами мощности в трех фазах и т. д.

Нейтральный провод в данном случае обеспечит сохранение симметрии фазных напряжений несмотря на то, что нагрузка несимметрична. Вот почему четырехпроводная сеть допускает включение однофазных потребителей различной мощности и характера импеданса в разные фазы. Цепь каждой нагруженной фазы будет находится под фазным напряжением генератора независимо от разницы нагрузок между фазами.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Здесь изображена векторная диаграмма несимметричной нагрузки. На диаграмме легко видеть, что за счет наличия нулевого провода, ток в нем представляет собой геометрическую сумму векторов токов каждой из фаз, при этом фазные напряжения не испытывают перекоса, который непременно бы возник если бы нулевого провода при несимметричной нагрузке не было.

Если по какой-нибудь причине нейтральный провод оборвется во время питания несимметричной нагрузки, то возникнет резкий перекос напряжений и токов трехфазной сети, который может привести к аварии.

Перекос случится в этом случае потому, что три цепи нагрузки, питаемые трехфазным источником, вместе со внутренним сопротивлением источника, образуют три цепи разного импеданса, падение напряжения на каждой из которых будет разным и система напряжений трехфазной сети перестанет поэтому быть симметричной. Подробнее об этом смотрите здесь: Причины и последствия обрыва нулевого провода в электросети

Источник

Несимметричная нагрузка

Нагрузка считается несимметричной, когда сопротивление хотя бы одной из фаз не равно сопротивлениям других фаз.

Несимметричная нагрузка возникает обычно при подключении к трехфазной сети однофазных приемников. Когда имеется несколько однофазных приемников, для более равномерной загрузки линейных проводов сети их делят на три примерно одинаковые в отношении мощности группы (рис. 1.7), называемые фазами приемников.

Особенностью электрической цепи при несимметричной нагрузке является то, что она должна иметь обязательно нейтральный провод. Объясняется это тем, что при его отсутствии значения фазных напряжений приемников существенно зависят от степени несимметрии нагрузки, т.е. от значений и характера сопротивлений приемников различных фаз. Поскольку последние могут изменяться в широких пределах при изменении числа включенных приемников, существенно могут изменяться и фазные напряжения. На одних приемниках напряжение может оказаться значительно больше, а на других – меньше фазного напряжения сети, т.е. того напряжения, на которые рассчитаны приемники.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

На рис. 1.8,а приведена векторная диаграмма цепи (рис. 1.6,а) с несимметричной активной нагрузкой фаз при наличии нейтрального провода, а на рис. 1.8,б – диаграмма той же цепи при его обрыве.

Из сравнения диаграмм видны последствия обрыва нейтрального провода.

Необходимость нейтрального провода становится особо очевидной, если представить, что при отсутствии нейтрального провода отключили все приемники (например, фаз а и b). Очевидно, напряжение фазы с при этом окажется равным нулю, так как фаза с окажется также отключенной.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Для повышения надежности соединения приемников с источником с помощью нейтрального провода в цепь последнего не ставят выключатели и даже защитные устройства, например, предохранители.

Фазные токи, углы сдвига фаз между фазными напряжениями и токами, а также фазные мощности при несимметричной нагрузке в цепи с нейтральным проводом будут в общем случае различными. Для определения мощностей всех фаз необходимо использовать выражения

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка. (9)

Если требуется определить ток IN нейтрального провода, то следует использовать комплексный метод. Ток IN можно также определить по векторной диаграмме.

При решении задачи в комплексной форме следует прежде всего выразить в комплексной форме полные сопротивления фаз и фазных напряжений. После этого нетрудно найти комплексные выражения фазных токов.

Комплексным методом можно воспользоваться и для определения фазных мощностей. Например, мощности фазы а будут равны

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка. (10)

Источник

Введение в несимметричность

Johan Driesen, Katholieke Universiteit Leuven

Несбалансированные токи являются важнейшей причиной несимметричного напряжения, а поскольку оно относится к важным параметрам качества энергоснабжения, в данной статье будут рассматриваться несимметричные синусоидальные напряжения.

Что такое дисбаланс?

Определение

Трехфазная система считается сбалансированной или симметричной, когда напряжения и токи каждой из фаз имеют одинаковую амплитуду, а сдвиг амплитуды по фазе равен 1200. Если не выполняется хотя бы одно из этих условий, то система считается асимметричной, или разбалансированной.

В статье условно полагается, что гармоники отсутствуют, т. е. форма кривых напряжения синусоидальная.

Количественные параметры

Для того чтобы количественно описать дисбаланс напряжения или тока в трехфазной системе, применяются так называемые компоненты Фортескью, или симметричные компоненты. Трехфазную систему условно разбивают на прямую или положительную, обратную или отрицательную, и униполярную или нуль-последовательности, обозначаемые индексами d, i, h (в некоторых источниках – 1, 2, 0). Их используют для расчетов при помощи трансформации матрицы трехфазного напряжения или тока. Индексы u, v, w (иногда a, b, c) означают разные фазы. Приведенное ниже выражение для напряжения U равноприменимо и для тока I с соответствующими значениями переменных величин

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка(1)

где Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка.

Данная трансформация с точки зрения количества энергии инвариантна, т. е. количество энергии, подсчитанное с исходными значениями, всегда одинаково и после трансформации.

Пример обратной трансформации:

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка(2)

Прямая система (система прямой последовательности) ассоциируется с положительным вращением поля, в то время как обратная – имеет отрицательное вращение поля (рис. 1). Так, например, электропривод трехфазного переменного тока служит наглядным примером вращающегося магнитного поля.

Графическое представление симметричных компонентов (прямого, обратного и униполярного)

Униполярные компоненты имеют одинаковые углы векторов фаз и лишь колеблются (без вращения поля). В системах без нейтрального проводника униполярные токи, очевидно, не имеют возможности течения, но между нейтральными точками Y-соединений с нулевым напряжением в питающей системе и нагрузке может возникнуть значительная ЭДС.

Разложение несимметричной системы на составляющие изображено на рис. 2.

Графическое разложение несимметричной системы с использованием компонентов рис. 1

На практике их измерение не столь очевидная процедура, особенно по положительной и отрицательной последовательностям. Использование цифрового измерительного инструмента является более простым способом подсчета по сравнению с классическими аналоговыми.

Значения отношения uU (напряжение) и uI (ток) между величинами амплитуды отрицательной и положительной последовательностей являются количественной величиной дисбаланса (%)

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Эти отношения используются, например, в стандартах, связанных с вопросами качества энергии, таких как европейский стандарт EN-50160 или стандарты серии МЭК 1000-3x.

Более простой, хотя и приблизительный, способ определения коэффициента дисбаланса напряжений

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

В данном случае используются только величины кажущейся мощности нагрузки Sl и мощности короткого замыкания SSC питающей цепи.

Полностью процедуры измерения и определения этих параметров изложены в стандартах. Там же приводятся методики статистического усреднения значений (3, 4) в течение определенного периода времени.

Ограничения

Международные стандарты (например, EN-50160 или стандарты серии МЭК 1000-3x) устанавливают предел коэффициента дисбаланса (3) не более 2 % для систем низкого и среднего напряжения и менее 1 % для высоковольтных на основании измерений в течение 10 минут, допуская отдельные мгновенные значения коэффициента дисбаланса не более 4 %. Однако в отдельных регионах эти величины могут быть уменьшены до уровня 0,25 %, например, на британской части железной дороги, проходящей в тоннеле под Ла-Маншем, поскольку эта часть линии представляет собой гигантскую однофазную нагрузку. Причиной жестких местных ограничений на асимметрию высоковольтных сетей является то, что они предназначены для использования с максимальной загрузкой с симметричными трехфазными нагрузками. Любой дисбаланс приводит к низкой эффективности работы и без того до предела загруженных сетей. При проектировании распределительных систем (низковольтных) питание однофазной нагрузки является одной из важных задач, поэтому и сама система, и присоединенные нагрузки должны разрабатываться и исполняться как можно более устойчивыми к дисбалансу.

Для примера определим величину требуемой мощности короткого замыкания устройств питания тяги для двухколейной скоростной железнодорожной линии с величиной номинальной мощности 2•15 МВ•А (французская TGV). Используя (4), видим, что при коэффициенте дисбаланса фазного напряжения в 1 % мощность короткого замыкания составит около 3 ГВ•А, что объясняет необходимость присоединения к сети сверхвысокого напряжения.

Более полно стандартизация осуществлена в документах МЭК 61000-2x, являющихся частью системы стандартизации вопросов ЭМС и EN-50160, описывающих характеристики напряжения в точках общего присоединения (PСС, ТОП).

Что вызывает дисбаланс?

При эксплуатации сетей всегда делается попытка обеспечить сбалансированное (симметричное) напряжение в точках общего присоединения между распределительной сетью и системой потребителя. При нормальных условиях на эти напряжения влияние оказывают:

— напряжения на выводах генераторов;

— сопротивление электрической системы;

— токи нагрузок, выплескиваемые в транспортную и распределительную сети.

Напряжения у источника генерации обычно симметричны благодаря конструкции и порядку эксплуатации синхронных генераторов, используемых на больших электростанциях. Поэтому электростанции обычно не являются источником дисбаланса. Даже при использовании асинхронных генераторов (как, например, в некоторых моделях ветровых источников) напряжения фаз симметричны.

Тем не менее там, где увеличивается количество источников промышленной или малой генерации, как правило на территории потребителя, ситуация иная. Многие из относительно небольших источников, в том числе солнечных гальванических, присоединяются в распределительной сети низкого напряжения посредством однофазных электронных инверторов. Точка соединения имеет относительно высокое сопротивление (величина мощности короткого замыкания относительно невелика), что создает большие предпосылки к разбалансировке фазных напряжений (4), чем в случае соединений с более высокими уровнями напряжения.

Сопротивление компонентов электрической системы на разных фазах не совсем одинаково. Так, геометрическая конфигурация воздушных линий электропередачи, асимметричных по отношению к земле, обуславливает разницу электрических параметров линии. В целом такие различия малы и ими можно пренебречь при принятии мер предосторожности.

В подавляющем большинстве случаев источником дисбаланса является асимметричность нагрузки.

На уровне высокого и среднего напряжения нагрузки обычно трехфазные и сбалансированные, хотя встречаются и одно- или двухфазные, как уже упомянутые скоростные железные дороги (рис. 3) или индукционные печи (в металлургии использующие весьма неоднородные по электрическим параметрам дуговые элементы для производства тепла).

Тяговые нагрузки переменного тока на железнодорожном транспорте как пример присоединений асимметричных однофазных нагрузок

Нагрузки в сетях низкого напряжения (компьютеры, системы освещения) обычно однофазные, поэтому обеспечить симметричность трудно. При организации низковольтной системы нагрузки обычно распределяют по фазам по принципу, учитывающему неэлектрические параметры: поэтажно в жилых или административных зданиях или порядно к каждому дому в поселках. Баланс эквивалента нагрузки на выводах распределительного трансформатора постоянно меняется в пределах неких отклонений от статистической суммы нагрузок на каждой фазе из-за индивидуального рабочего цикла каждой отдельной нагрузки.

Дисбаланс также вызывается аномальным состоянием системы. Типичными примерами являются повреждения цепей фаза-земля, фаза-фаза и открытых проводников. Эти повреждения вызывают провалы напряжения на одной или нескольких фазах и могут косвенно привести к образованию сверхнапряжения на оставшихся. В этом случае система становится разбалансированной, но очень часто такое изменение напряжения квалифицируется как скачки напряжения, поскольку защитные средства сети должны отключать поврежденный участок.

Каковы последствия?

Чувствительность электрооборудования к дисбалансу разная. Ниже дается краткий обзор наиболее часто встречающихся проблем.

Индукционные двигатели

Ими являются асинхронные устройства переменного тока с внутренними наведенными вращающимися магнитными полями. Направление ротации поля обратного компонента противоположно полю прямого компонента. В связи с этим в случае разбалансированного питания суммарное вращение магнитного поля становится эллиптическим вместо круглого. Существуют проблемы, связанные с индукционными двигателями, вызванные дисбалансом.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Кривые крутящий момент-скорость индукционного электропривода при несимметричном питании

Во-первых, привод не может развить полный крутящий момент, поскольку противоположная направленность момента, образующегося по отрицательной последовательности, уменьшает величину крутящего момента нормального вращения магнитного поля. На рис. 4 изображены различные характеристики скорость – крутящий момент индукционного электропривода при разбалансированном питании. Видно, что в зоне нормального режима работы (почти прямого участка кривой Td) значения Ti и Th отрицательны. Эти характеристики можно измерить при подсоединении привода, как указано на рис. 5.

Во-вторых, подшипники могут получить механические повреждения наведенными компонентами крутящего момента на частоте, двукратно превышающей частоту системы.

Схемы присоединения индукционного электропривода по питанию с неизвестным компонентом асимметрии

И наконец, статор и ротор испытывают излишнюю тепловую нагрузку, весьма вероятно ускоряющую тепловое старение. Дополнительная тепловая энергия производится из-за наведения токов значительной величины быстровращающимся (относительно) обратным (для ротора) магнитным полем. Для устранения последствий этого эффекта приходится снижать величину номинала мощности такого электропривода, что может потребовать установки более мощного.

Синхронные генераторы

Генераторы синхронного типа также являются устройствами переменного тока, использующимися в малой энергетике, например, в комбинированных электротеплогенераторах. Они могут сломаться от того же, что и индукционные двигатели, но особенно после перегрева. Особое внимание следует уделять проектированию стабилизирующей обмотки ротора, где токи наводятся обратными и униполярными компонентами.

Мощность силовых трансформаторов, кабелей и передающих систем

Мощностные характеристики трансформаторов, кабелей и передающих систем снижаются в результате воздействия компонентов по отрицательной последовательности. Эксплуатационный предел этого явления определяется номиналом RMS суммарного тока, включающего бесполезную составляющую непрямой последовательности. Это следует учитывать при определении порогов срабатывания защитных устройств, управляемых суммарными токами. В результате приходится снижать номиналы соответствующих систем (на основе данных производителя) и применять для выполнения тех же задач изделия с большей номинальной мощностью.

Трансформаторы

Силовые трансформаторы преобразуют напряжения по отрицательным последовательностям так же, как и по положительным. Эффект для униполярных напряжений зависит от соединений первичной и вторичной обмоток и от наличия нейтрального проводника. Если, например, на одной стороне трехфазная цепь с нейтральным проводником, то присутствуют нейтральные токи. А если на другой стороне обмотки соединение по схеме треугольника (дельта), то униполярный ток превращается в циркулирующий в дельта-элементе. Соответствующий униполярный магнитный поток проходит сквозь элементы конструкции трансформатора, вызывая большие потери, что иногда приводит к необходимости дополнительного снижения номинала мощности.

Электронные преобразователи энергии

Такие устройства весьма распространены, например, в регулируемых электроприводах, источниках питания для компьютерных устройств, энергосберегающих осветительных приборах и т. д. Электронные преобразователи энергии могут стать дополнительным источником, хотя в целом суммарные гармонические искажения останутся более или менее постоянными. Однако сам эффект должен обязательно учитываться производителями пассивных фильтров.

Перечисленные выше устройства – трехфазные нагрузки. Но, разумеется, однофазные нагрузки тоже могут подвергнуться отрицательному воздействию дисбаланса.

Как снизить влияние дисбаланса?

Для снижения последствий дисбаланса можно предпринять несколько действий, каждое из которых имеет различную степень сложности.

Первое и основное решение состоит в перераспределении нагрузок по фазам таким образом, чтобы их величины стали равными. Для некоторых из нагрузок может оказаться достаточным коррекция эксплуатационных параметров.

Для снижения влияния токов по отрицательной последовательности, вызывающих падение напряжения, требуется система с малым внутренним сопротивлением. Этого можно достичь путем соединения разбалансированных нагрузок в точках с более высоким уровнем мощности короткого замыкания или иными известными способами снижения внутреннего сопротивления.

К другому типу мероприятий относится применение специальных трансформаторов, а именно трансформаторов схемы Скотта и схемы Штайнмеца:

— трансформатор схемы Скотта состоит из двух однофазных трансформаторов, присоединенных к трехфазной системе. Они соединены так, что на выходе образуются две однофазные системы, которые избавляют трехфазную сеть от влияния асимметричной нагрузки;

— трансформатор Штайнмеца представляет собой трехфазный трансформатор с дополнительной симметрирующей нагрузкой, состоящей из емкости и индуктора с номиналами, пропорциональными однофазным нагрузкам (рис. 6). Когда значение реактивной мощности индуктора и емкости равно активной мощности нагрузки, деленной на √3, трехфазная сеть получает симметричную нагрузку. Значение номинальной трехфазной мощности трансформатора равно активной мощности однофазной нагрузки. Следует помнить о том, что идеальная симметрия достигается только для нагрузок, мощность которых точно соответствует той, что выбрана при проектировании системы.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Однофазная нагрузка, присоединенная в трехфазной сети при помощи трансформатора по схеме Штайнмеца

И наконец, специальные быстродействующие электронные силовые устройства могут применяться для ограничения дисбаланса. Эффект их применения основан на быстром изменении величины дополнительного сопротивления, компенсирующего отклонения на каждой фазе. Эти устройства могут компенсировать ненужную реактивную мощность. Однако они довольно дороги и их применяют для очень больших нагрузок, например, для дуговых печей, поскольку иные способы в данном случае малоэффективны.

Сейчас разрабатываются и другие виды устройств для снижения последствий асимметрии фазных токов (напряжений) и иных проблем качества электроэнергии.

Заключение

Асимметрия представляет собой серьезную проблему качества электроэнергии, оказывающей негативное воздействие преимущественно на низковольтные распределительные сети, например, в административных зданиях из-за широкого применения компьютерной техники и современных осветительных приборов. Однако этот эффект довольно просто показать в количественных показателях, что позволяет сравнить его величину с требуемыми нормами.

Успешное решение проблемы асимметрии, безусловно, приводит к снижению стоимости эксплуатации и, что крайне важно, энергопотерь.

Перепечатано с сокращениями из издания Европейского института меди

«Прикладное руководство по качеству электроэнергии»

Источник

Причины возникновения несимметричных режимов в электрических сетях

Симметричная трехфазная система напряжений характеризуется одинаковыми по модулю и фазе напряжениями во всех трех фазах. При несимметричных режимах напряжения в разных фазах не равны.

Несимметричные режимы в электрических сетях возникают по следующим причинам:

1) неодинаковые нагрузки в различных фазах,

2) неполнофазная работа линий или других элементов в сети,

3) различные параметры линий в разных фазах.

Наиболее часто несимметрия напряжений возникает из-за неравенства нагрузок фаз. Поскольку основной причиной несимметрии напряжения является различие по фазам (несимметричная нагрузка), то это явление наиболее характерно для низковольтных электрических сетей 0,4 кВ.

В городских и сельских сетях 0,4 кВ несимметрия напряжений вызывается в основном подключением однофазных осветительных и бытовых электроприемников малой мощности. Количество таких однофазных электроприемников велико, и их нужно равномерно распределять по фазам для уменьшения несимметрии.

В сетях высокого напряжения несимметрия вызывается, как правило, наличием мощных однофазных электроприемников, а в ряде случаев и трехфазных электроприемников с неодинаковым потреблением в фазах. К последним относятся дуговые сталеплавильные печи. Основные источники несимметрии в промышленных сетях 0,38—10 кВ — это однофазные термические установки, руднотермические печи, индукционные плавильные печи, печи сопротивления и различные нагревательные установки. Кроме того, несимметричные электроприемники — это сварочные аппараты различной мощности. Тяговые подстанции электрифицированного на переменном токе железнодорожного транспорта являются мощным источником несимметрии, так как электровозы — однофазные электроприемники. Мощность отдельных однофазных электроприемников в настоящее время достигает нескольких мегаватт.

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка

Различают два вида несимметрии: систематическую и вероятностную, или случайную. Систематическая несимметрия обусловлена неравномерной постоянной перегруз- кой одной из фаз, вероятностная несимметрия соответствует непостоянным нагрузкам, при которых в разное время пе- регружаются разные фазы в зависимости от случайных факторов (перемежающаяся несимметрия).

Неполнофазная работа элементов сети вызывается кратковременным отключением одной или двух фаз при коротких замыканиях либо более длительным отключением при пофазных ремонтах. Одиночную линию можно оборудовать устройствами пофазного управления, которые отключают поврежденную фазу линии в тех случаях, когда действие АПВ оказывается неуспешным из-за устойчивого короткого замыкания.

В подавляющем большинстве устойчивые короткие замыкания однофазные. При этом отключение поврежденной фазы приводит к сохранению двух других фаз линии в работе.

В сети с заземленной нейтралью электроснабжение по неполнофазной линии может оказаться допустимым и позволяет отказаться от строительства второй цепи линии. Неполнофазные режимы могут возникать и при отключении трансформаторов.

В некоторых случаях для группы, составленной из однофазных трансформаторов, при аварийном отключении одной фазы может оказаться допустимым электроснабжение по двум фазам. В этом случае не требуется установка резервной фазы, особенно при наличии двух групп однофазных трансформаторов на подстанции.

Неравенство параметров линий по фазам имеет место, например, при отсутствии транспозиции на линиях или удлиненных ее циклах. Транспозиционные опоры ненадежны и являются источниками аварий. Уменьшение числа транспозиционных опор на линии уменьшает ее повреждаемость и повышает надежность. В этом случае ухудшается выравнивание параметров фаз линии, для которого обычно и применяется транспозиция.

Влияние несимметрии напряжений и токов

Появление напряжений и токов обратной и нулевой последовательности U2, U0, I2, I0 приводит к дополнительным потерям мощности и энергии, а также потерям напряжения в сети, что ухудшает режимы и технико-экономические показатели ее работы. Токи обратной и нулевой последовательностей I2, I0 увеличивают потери в продольных ветвях сети, а напряжения и токи этих же последовательностей — в поперечных ветвях.

Наложение U2 и U0 приводит к разным дополнительным отклонениям напряжения в различных фазах. В результате напряжения могут выйти за допустимые пределы. Наложение I2 и I0 приводит к увеличению суммарных токов в отдельных фазах элементов сети. При этом ухудшаются ус- ловия их нагрева и уменьшается пропускная способность.

Несимметрия отрицательно сказывается на рабочих и технико-экономических характеристик вращающихся электрических машин. Ток прямой последовательности в статоре создает магнитное поле, вращающееся с синхронной частотой в направлении вращения ротора. Токи обратной последовательности в статоре создают магнитное поле, вращающееся относительно ротора с двойной синхронной частотой в направлении, противоположном вращению. Из- за этих токов двойной частоты в электрической машине возникают тормозной электромагнитный момент и дополнительный нагрев, главным образом ротора, приводящие к сокращению срока службы изоляции.

В асинхронных двигателях возникают дополнительные потери в статоре. В ряде случаев приходится при проектировании увеличивать номинальную мощность электродвигателей, если не принимать специальные меры по симметрированию напряжения.

В синхронных машинах кроме дополнительных потерь и нагрева статора и ротора могут начаться опасные вибрации. Из-за несимметрии сокращается срок службы изоляции трансформаторов, синхронные двигатели и батарей конденсаторов уменьшают выработку реактивной мощности.

Несимметрия напряжения в цепи питания осветительной нагрузки приводит к тому, что световой поток светильников одной фазы (фаз) уменьшается, а другой фазы — увеличивается, снижается срок службы ламп. На одно- и двухфазные электроприемники несимметрия воздействует как отклонение напряжения.

Суммарный ущерб, обусловленный несимметрией в промышленных сетях, включает стоимость дополнительных потерь электроэнергии, увеличение отчислений на реновацию от капитальных затрат, технологический ущерб, ущерб, обусловленный снижением светового потока ламп, установленных в фазах с пониженным напряжением, и сокращением срока службы ламп, установленных в фазах с повышенным напряжением, ущерб из-за уменьшения реактивной мощности, генерируемой конденсаторными батареями и синхронными двигателями.

Несимметрия напряжений характеризуется коэффициентом обратной последовательности напряжений и коэффициентом нулевой последовательности напряжений, нормальное и максимальное допустимые значения которых составляют 2 и 4 %.

Симметрирование напряжений в сети сводится к компенсации тока и напряжения обратной последовательности.

При стабильном графике нагрузок снижение систематической несимметрии напряжений в сети может быть достигнуто выравниванием нагрузок фаз путем переключения части нагрузок с перегруженной фазы на ненагруженную.

Рациональное перераспределение нагрузок не всегда позволяет снизить коэффициент несимметрии напряжений до допустимого значения (например когда часть мощных однофазных электроприемников работает по условиям технологии не все время, а также при профилактических и капитальных ремонтах). В этих случаях необходимо применять специальные симметрирующие устройства.

Известно большое число схем симметрирующих устройств, часть из них выполняется управляемыми в зависимости от характера графика нагрузки.

Для симметрирования однофазных нагрузок применяется схема, состоящая из индуктивности и емкости. Нагрузка и включенная параллельно ей емкость включаются на линейное напряжение. На два других линейных напряжения включаются индуктивность и еще одна емкость.

Для симметрирования двух- и трехфазных несимметричных нагрузок применяется схема с неодинаковыми мощностями батарей конденсаторов, включенными в треугольник. Иногда применяют симметрирующие устройства со специальными трансформаторами и автотрансформаторами.

Поскольку симметрирующие устройства содержат батареи конденсаторов, целесообразно применять такие схемы, в которых одновременно симметрируется режим и генерируется Q с целью ее компенсации. Устройства для одновременного симметрирования режима и компенсации Q находятся в стадии разработки.

Снижение несимметрии в четырехпроводных городских сетях 0,38 кВ можно осуществлять путем уменьшения тока нулевой последовательности I0 и снижения сопротивления нулевой последовательности Z0 в элементах сети.

Уменьшение тока нулевой последовательности I0 в первую очередь достигается перераспределением нагрузок. Выравнивание нагрузок достигается использованием сетей, в которых все или часть трансформаторов работают параллельно на стороне низкого напряжения. Снижение сопротивления нулевой последовательности Z 0 можно легко осуществить для воздушных линий 0,38 кВ, которые обычно сооружаются в районах с малой плотностью нагрузки. Целесообразность уменьшения Z0 для кабельных линий, т. е. увеличения сечения нулевого провода, должна быть специально обоснована соответствующими технико-экономическими расчетами.

Существенное влияние на несимметрию напряжений в сети оказывает схема соединения обмоток распределительного трансформатора 6—10/0,4 кВ. Большинство распределительных трансформаторов, установленных в сетях, имеют схему звезда — звезда с нулем (У/Уо). Такие распределительные трансформаторы дешевле, но у них велико сопротивление нулевой последовательности Z0.

Для снижения несимметрии напряжений, вызываемой распределительными трансформаторами, целесообразно применять схемы соединения треугольник— звезда с нулем (Д/Уо) или звезда—зигзаг (У/Z). Наиболее благоприятно для снижения несимметрии применение схемы У/Z. Распределительные трансформаторы с таким соединением более дорогие, и изготовление их очень трудоемко. Поэтому их надо применять при большой несимметрии, обусловленной несимметрией нагрузок и сопротивление нулевой последовательности Z0 линий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что такое несимметричная нагрузка. Смотреть фото Что такое несимметричная нагрузка. Смотреть картинку Что такое несимметричная нагрузка. Картинка про Что такое несимметричная нагрузка. Фото Что такое несимметричная нагрузка