Что такое ноль многочлена
Что такое ноль многочлена
Ключевые слова конспекта: Многочлен, стандартный вид многочлена, члены многочлена, полиномы, нуль-многочлен, степень многочлена, приведение подобных слагаемых, старший коэффициент, свободный член многочлена.
Выражение 5a 2 b – 3ab – 4а 3 + 7 представляет собой сумму одночленов 5a 2 b, –5ab, –4а 3 и 7. Такие выражения называют многочленами.
✅ Определение. Многочленом называется сумма одночленов.
Одночлены, из которых составлен многочлен, называют членами многочлена. Например, членами многочлена х 3 у – 4х 2 + 9 являются одночлены х 3 у, –4х 2 и 9.
Многочлен, состоящий из двух членов, называется двучленом, а многочлен, состоящий из трёх членов, — трёхчленом. Одночлен считают многочленом, состоящим из одного члена. Многочлены иногда называют полиномами, а двучлены — биномами (от греческих слов «поли» — «много», «номос» — «член, часть» и латинского «би» — «два, дважды»).
Зная значения переменных, входящих в многочлен, можно вычислить значение многочлена.
Пример 1. Найдём значение многочлена –0,3х 2 у – х 3 + 7у при х = –0,2, у = –1.
Имеем:
–0,3х 2 у – х 3 +7у = –0,3 • (–0,2) 2 • (–1) – (–0,2) 3 + 7 • (–1) = 0,012 + 0,008 – 7 = –6,98.
Стандартный вид многочлена
В многочлене 13х 2 у + 4 + 8ху – 6х 2 у — 9 первый и четвёртый члены имеют одинаковую буквенную часть. Члены многочлена, имеющие одинаковую буквенную часть, называются подобными членами. Подобными членами считаются и слагаемые, не имеющие буквенной части.
Сумму подобных членов многочлена можно заменить одночленом. Такое тождественное преобразование называют приведением подобных членов или приведением подобных слагаемых. Приведение подобных членов основано на переместительном и сочетательном свойствах сложения и распределительном свойстве умножения.
Пример 2. Приведём подобные члены многочлена 13х 2 у + 4 + 8ху – 6х 2 у — 9.
Имеем:
13х 2 у + 4 + 8ху – 6х 2 у – 9 = (13х 2 у – 6х 2 у) + 8ху + (4 – 9) = (13 – 6)х 2 у + 8ху – 5 = 7х 2 у + 8ху – 5.
В многочлене 7х 2 у + 8ху – 5 каждый член является одночленом стандартного вида, причём среди них нет подобных членов. Такие многочлены называются многочленами стандартного вида.
Рассмотрим многочлен стандартного вида За 3 – 5а 3 b 2 + 7. Его членами являются одночлены третьей, пятой и нулевой степени. Наибольшую из этих степеней называют степенью многочлена. Таким образом, этот многочлен является многочленом пятой степени.
Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.
Пример 3. Определим степень многочлена а 6 + 2а 2 b – а 6 + 1.
Для этого приведём многочлен к стандартному виду: а 6 + 2а 2 b – а 6 + 1 = 2a 2 b + 1.
Степень полученного многочлена равна трём. Значит, и степень заданного многочлена равна трём.
Если многочлен является числом, отличным от нуля, то степень такого многочлена равна 0. Число нуль называют нуль-многочленом. Его степень считается не определённой.
Среди многочленов выделяют многочлены с одной переменной. Многочлен n-й степени с одной переменной в стандартном виде записывается так: а0х n + а1х n-1 + а2х n-2 + … + аn-2х 2 + аn-1х + аn, где х — переменная, а0, a1 а2, …, аn-1, аn — произвольные числа, n ∈ N или n = 0. Коэффициент при х n называют старшим коэффициентом (в нашем случае это а0). Слагаемое, не содержащее переменной х, называют свободным членом многочлена (в нашем случае это аn). Например, старший коэффициент многочлена х 4 + 2х 3 – х 2 + 3х равен 1, а свободный член равен нулю.
Заметим, что значение многочлена с переменной х при х = 0 равно свободному члену этого многочлена, а при х = 1 — сумме его коэффициентов.
Это конспект по математике на тему «Многочлен и его стандартный вид». Выберите дальнейшие действия:
Многочлен. Упрощение, степень, стандартный вид, нуль-многочлены
Содержание
Мы с вами уже разобрали, чем являются одночлены, и выяснили, что при произведении одночленов также получится одночлен. Однако совсем иная ситуация обстоит с суммой одночленов. Давайте рассмотрим на примере:
Если данные выражения не являются одночленами, то какое название мы можем им дать? Все просто – такие примеры называют многочленами.
Многочлены – это выражения, которые являются суммой нескольких одночленов.
Упрощение многочленов
Многочлены могут быть как небольшими, так и состоящими из нескольких частей. Давайте рассмотрим несколько примеров таких выражений:
В выражениях может находиться несколько подобных членов, что позволяет упростить само выражение. В данном выражении мы можем увидеть подобные одночлены, которые закрашены одинаковыми цветами:
Для упрощения такого многочлена нам нужно использовать правило подобных слагаемых, т.е. произвести отдельные арифметические действия над каждой подобной частью. В конце у нас получится такое выражение:
Такое упрощение называют приведением подобных членов многочлена. Это преобразование позволяет заменить многочлен на тождественно равный ему, но более простой – с меньшим количество членов.
Стандартный вид многочленов
Многочлен, состоящий из одночленов стандартного вида, расположенных в порядке убывания степеней и среди которых нет подобных, называют многочленом стандартного вида.
Одночлены в многочлене стандартного вида располагают в порядке убывания их степени, а свободный одночлен записывают в самом конце. Для примера можно привести следующие выражения:
Стоит отметить, что любой многочлен можно привести к стандартному виду, если привести подобные. То есть из выражения нестандартного вида:
Мы можем получить выражение стандартного вида:
Степень многочлена
Рассмотрим многочлен стандартного вида:
Степенью многочлена стандартного вида называют наибольшую из степеней одночленов, из которых этот многочлен составлен.
Давайте рассмотрим еще несколько примеров многочленов с их степенями:
$\color
$\color
$\color
Коэффициенты многочленов
Выделенные числа и будут являться коэффициентами переменных множителей.
Нуль-многочлены
Число 0, а также многочлены, которые тождественно равны нулю, называют нуль-многочленами. Примеры таких выражений:
Их не относят к многочленам стандартного вида и считается, что нуль-многочлены не имеют степени.
Что такое нули многочлена?
Кроме того, как найти настоящие нули на графике?
Если мы изобразим этот многочлен как y = p (x), то вы увидите, что это значения x, где y = 0. Другими словами, это точки пересечения с x на графике. Нули полинома можно найти с помощью найти, где график многочлена пересекает или касается оси x.
Таким образом, может ли 0 быть многочленом?
Как и любое постоянное значение, значение 0 можно рассматривать как (постоянный) многочлен, называемый нулевым многочленом. В нем нет ненулевых членов, поэтому, строго говоря, в нем тоже нет степени. Таким образом, его степень обычно не определена.
Также нужно знать, сколько нулей у полинома? Число нулей полинома
Независимо от четности или нечетности, любой многочлен положительного порядка может иметь максимальное количество нулей, равное его порядку. Например, кубическая функция может иметь до трех нулей, но не более. Это известно как основная теорема алгебры.
Какой пример нулевого многочлена?
Могут ли нули быть мнимыми?
Как узнать, сколько нулей имеет функция?
Как правило, для данной функции f (x) ее нули можно найти, установив функцию равной нулю. Значения x, которые представляют заданное уравнение, являются нулями функции. Чтобы найти нули функции, найдите значения x, где f (x) = 0.
Какие нули на графике?
Нули квадратного уравнения равны точки пересечения графика квадратного уравнения с осью абсцисс. В этом руководстве вы увидите, как использовать график квадратного уравнения, чтобы найти нули уравнения.
Какова степень полинома √ 3?
Следовательно, степень полинома √3 равна нуль. Корень 3 является многочленом, потому что многочлен может быть постоянным значением, отличным от 0. Поскольку, √3 является постоянным, следовательно, это многочлен.
Как называется многочлен степени 2?
Следовательно, многочлен второй степени называется квадратичный полином.
Сколько нулей имеет многочлен четвертой степени?
В квартике также будет до четыре корня или нули.
Может ли кубическая функция иметь 2 нуля?
Таким образом, когда мы считаем кратность, кубический многочлен может иметь только три корня или один корень; а квадратичный многочлен может иметь только два корня или нулевой корень. Это полезно знать при факторизации многочлена. Основная теорема в ее наиболее общей форме (включающая комплексные числа) имеет долгую историю.
Что является постоянным и примером?
Что такое нулевой полиномиальный класс 9?
Как узнать, есть ли мнимые нули?
Почему мнимые нули?
По отношению к квадратным уравнениям встречаются мнимые числа (и комплексные числа). когда значение под коренной частью формулы корней квадратного уравнения отрицательно. Когда это происходит, уравнение не имеет корней (нулей) в наборе действительных чисел.
Как найти наименьшие нули функции?
Чтобы найти ноль, установите функцию равной 0. решить для x, и это ваш наименьший ноль.
Какие нули у 2x 2 5x 2?
∴ Нули 2 × 2−5x + 2 равны 21 и 2.
Каковы кратности нулей?
Является ли 10x многочленом?
Какая формула для многочленов?
Является ли корень 3 многочленом?
Сколько нулей может иметь полином 3-й степени?
Какова степень полинома 3 9?
В этом примере степень полинома равна 3. Итак, мы можем сказать, что это кубический многочлен. Коэффициенты переменной могут быть любыми действительными числами.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №11. Многочлен P(x) и его корень. Алгебраическое уравнение.
Перечень вопросов, рассматриваемых в теме
1) обобщенное понятие многочлена;
2) основные действия над многочленами;
3) определение алгебраического уравнения;
Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.
Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.
Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).
Следствие. Если число а является корнем многочлена Р(х), то многочлен
где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.
Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.
Степенью алгебраического уравнения называют степень многочлена P.
Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Общая теория многочленов многих переменных далеко выходит за рамки школьного курса.
Мы рассмотрим многочлены одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.
Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.
Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.
Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида
где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.
Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.
Степенью алгебраического уравнения называют степень многочлена P.
является алгебраическим уравнением четвертой степени от трёх переменных (с тремя неизвестными) над множеством вещественных чисел.
Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.
Теорема Безу, невзирая на кажущуюся простоту и очевидность, является одной из базовых теорем теории многочленов. В данной теореме алгебраические характеристики многочленов (они позволяют работать с многочленами как с целыми числами) связываются с их функциональными характеристиками (которые позволяют рассматривать многочлены как функции).
Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).
Эту закономерность отметил и математик Безу.
Следствие. Если число а является корнем многочлена Р(х), то многочлен
Основные работы Этьенна Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений.
В теории решения систем линейных уравнений он содействовал возникновению теории определителей, развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную Маклореном) о том, что две кривые порядка m и n пересекаются не более чем в mn точках.
Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный «Курс математики», написанный им в 1764-69 годах.
Безу развил метод неопределённых множителей. В элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе.
Часть трудов Безу посвящена внешней баллистике.
Именем ученого названа одна из основных теорем алгебры.
Примеры алгебраических уравнений
Примеры и разбор решения заданий тренировочного модуля
Разложим на множители многочлен:
Решение: )
Ответ: )
)
Многочлены
Определения и примеры
Многочлен — это сумма одночленов.
Например, выражение 2x + 4xy 2 + x + 2xy 2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
Но это действие нагромождает многочлен скобками, поэтому вычитание на сложение не заменяют, учитывая в будущем, что каждый одночлен многочлена будет рассматриваться вместе со знаком, который перед ним располагается.
Одночлены, из которых состоит многочлен, называют членами многочлена.
Если многочлен состоит из двух членов, то такой многочлен называют двучленом. Например, многочлен x + y является двучленом.
Если многочлен состоит из трёх членов, то такой многочлен называют трехчленом. Например, многочлен x + y + z является трехчленом.
Если какой-нибудь многочлен содержит обычное число, то это число называют свободным членом многочлена. Например, в многочлене 3x + 5y + z + 7 член 7 является свободным членом. Свободный член многочлена не содержит буквенной части.
Многочленом также является любое числовое выражение. Так, следующие выражения являются многочленами:
Сложение многочленов
К многочлену можно прибавить другой многочлен. Например, прибавим к многочлену 2x + y многочлен 3x + y.
Заключим в скобки каждый многочлен и соединим их знаком «плюс», указывая тем самым, что мы складываем многочлены:
Теперь раскрываем скобки:
Далее приведём подобные слагаемые:
Таким образом, при сложении многочленов 2x + y и 3x + y получается многочлен 5x + 2y.
Разрешается также сложение многочленов в столбик. Для этого их следует записать так, чтобы подобные слагаемые располагались друг под другом, затем выполнить самó сложение. Решим предыдущий пример в столбик:
Если в одном из многочленов окажется слагаемое, которое не имеет подобного слагаемого в другом многочлене, оно переносится к результату без изменений. Как говорят при сложении обычных чисел — «сносится».
Решим этот же пример с помощью скобок:
Пример 3. Сложить многочлены 7x 3 + y + z 2 и x 3 − z 2
Решим этот пример в столбик. Запишем второй многочлен под первым так, чтобы подобные слагаемые располагались друг под другом:
Решим этот же пример с помощью скобок:
Вычитание многочленов
Заключим в скобки каждый многочлен и соединим их знаком «минус», указывая тем самым, что мы выполняем вычитание:
Теперь раскроем скобки:
Приведём подобные слагаемые. Слагаемые y и −y являются противоположными. Сумма противоположных слагаемых равна нулю
Приводя подобные слагаемые, мы обычно складываем их. Но в качестве знака операции можно использовать знак одночлена. Так, приводя подобные слагаемые y и −y мы сложили их по правилу приведения подобных слагаемых. Но можно не складывая, записать их друг за другом
Получится тот же результат, поскольку выражения y + (−y) и y − y одинаково равны нулю:
Возвращаемся к нашему примеру. Вычеркнем члены y и −y :
Или без сложения, записав члены друг за другом:
Решим этот же пример в столбик:
Пример 2. Вычесть из многочлена 13x − 11y + 10z многочлен −15x + 10y − 15z
Решим этот пример с помощью скобок, а затем в столбик:
Следует быть внимательным при вычитании в столбик. Если не следить за знаками, вероятность допустить ошибку очень высокá. Нужно учитывать не только знак операции вычитания, но и знак располагающийся перед слагаемым.
Так, в данном примере из слагаемого 10z вычиталось слагаемое −15z
Складывая или вычитая многочлены при помощи скобок, первый многочлен в скобки можно не заключать. Так, в данном примере из многочлена 13x − 11y + 10z требовалось вычесть многочлен −15x + 10y − 15z
Вычитание было записано так:
Но первый многочлен можно не заключать в скобки:
Заключение первого многочлена в скобки на первых порах позволяет начинающим наглядно увидеть, что второй многочлен полностью вычитается из первого, а не из определенной его части.
Представление многочлена в виде суммы или разности
Многочлен можно представить в виде суммы или разности многочленов. По сути это обратное действие раскрытию скобок, поскольку идея подразумевает, что имеется некий многочлен, и из него можно образовать сумму или разность многочленов, заключив в скобки некоторые из членов исходного многочлена.
В скобки также можно было бы заключить члены 3x, 5y, z и прибавить это выражение в скобках к члену 7
Представляя многочлен в виде разности многочленов, нужно придерживаться следующего правила. Если члены заключаются в скобки после знака минуса, то этим членам внутри скобок нужно поменять знаки на противоположные.
Но мы видим, что после знака минуса следует заключение членов z и 7 в скобки. Поэтому этим членам нужно поменять знаки на противоположные. Делать это нужно внутри скобок:
Вообще, представляя многочлен в виде суммы или разности, можно придерживаться следующих правил:
Если перед скобками ставится знак «плюс», то все члены внутри скобок записываются со своими же знаками.
Если перед скобками ставится знак «минус», то все члены внутри скобок записываются с противоположными знаками.
Пример 1. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде суммы каких-нибудь двучленов:
Пример 2. Представить многочлен 3x 4 + 2x 3 + 5x 2 − 4 в виде разности каких-нибудь двучленов:
Перед вторыми скобками располагался минус, поэтому члены 5x 2 и −4 были записаны с противоположными знаками.
Многочлен и его стандартный вид
Многочлен, как и одночлен, можно привести к стандартному виду. В результате получается упрощенный многочлен, с которым удобно работать.
Чтобы привести многочлен к стандартному виду, нужно привести подобные слагаемые в этом многочлене. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене — приведением его подобных членов.
Подобные члены многочлена это члены, имеющие одинаковую буквенную часть.
Как и у одночлена, у многочлена имеется степень. Чтобы определить степень многочлена, сначала его нужно привести к стандартному виду, затем выбрать тот одночлен, степень которого является наибольшей из всех.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в него одночленов.
В некоторых многочленах прежде всего требуется привести к стандартному виду одночлены, входящие в него, и только потом приводить сам многочлен к стандартному виду.
Например, приведем многочлен 3xx 4 + 3xx 3 − 5x 2 x 3 − 5x 2 x к стандартному виду. Этот многочлен состоит из одночленов, которые не приведены к стандартному виду. Сначала приведём их к стандартному виду:
Пример 2. Привести многочлен 3ab + 4cc + ab + 3c 2 к стандартному виду.
Далее приведём подобные члены:
Пример 3. Привести многочлен 4x 2 − 4y − x 2 + 17y − y к стандартному виду.
Приводя подобные члены, можно использовать скобки. Для этого подобные члены следует заключить в скобки, затем объединить выражения в скобках с помощью знака «плюс».
Теперь в скобках выполним приведение подобных членов:
В получившемся выражении (3x 2 ) + (12y) раскроем скобки:
Конечно, такой подход нагромождает выражение, но зато позволяет свести к минимуму допущение ошибок.
Пример 4. Привести многочлен 12x 2 − 9y − 9x 2 + 6y + y к стандартному виду.
Заключим в скобки подобные слагаемые и объединим их с помощью знака «плюс»
Далее вычисляем содержимое скобок:
Избавляемся от скобок при помощи раскрытия:
Изменение порядка следования членов
Многочлен это сумма одночленов. То есть исходный двучлен двучлен x − y является суммой x и −y
От перестановки мест слагаемых сумма не меняется. Тогда x и −y можно поменять местами
Пример 2. В двучлене −y − x поменять местами члены.
Двучлен −y − x это сумма членов −y и −x
Таким образом, решение можно записать покороче:
Пример 3. Упорядочить члены многочлена x + xy 3 − x 2 в порядке убывания степеней.
Умножение одночлена на многочлен
Одночлен можно умножить на многочлен. Чтобы умножить одночлен на многочлен, нужно этот одночлен умножить на каждый член многочлена и полученные произведения сложить.
Вычислим получившиеся произведения:
Умножение желательно выполнять в уме. Так решение получается короче:
В некоторых примерах одночлен располагается после многочлена. В этом случае опять же каждый член многочлена нужно перемножить с одночленом и полученные произведения сложить.
Например, предыдущий пример мог быть дан в следующем виде:
В этом случае мы умножили бы каждый член многочлен (2x + y + 5) на одночлен 3x 2 и сложили бы полученные результаты:
Умножение одночлена на многочлен (или умножение многочлена на одночлен) основано на распределительном законе умножения.
Вообще, умножение одночлена на многочлен, да и распределительный закон умножения имеют геометрический смысл.
Допустим, имеется прямоугольник со сторонами a и b
Увеличим сторону b на c
Достроим отсутствующую сторону и закрасим для наглядности получившийся прямоугольник:
Теперь вычислим площадь получившегося большого прямоугольника. Он включает в себя желтый и серый прямоугольники.
или ширину умножить на длину, чтобы расположить буквы a, b и c в алфавитном порядке:
Таким образом, выражения a × (b + c) и ab + ac равны одному и тому же значению (одной и той же площади)
К примеру, пусть у нас имеется прямоугольник длиной 4 см, и шириной 2 см, и мы увеличили длину на 2 см
2 × (4 + 2) = 2 × 4 + 2 × 2 = 12.
Действительно, в получившемся большом прямоугольнике содержится двенадцать квадратных сантиметров:
Пример 2. Умножить одночлен 2a на многочлен a 2 − 7a − 3
Умножим одночлен 2a на каждый член многочлена a 2 − 7a − 3 и сложим полученные произведения:
Пример 3. Умножить одночлен −a 2 b 2 на многочлен a 2 b 2 − a 2 − b 2
Умножим одночлен −a 2 b 2 на каждый член многочлена a 2 b 2 − a 2 − b 2 и сложим полученные произведения:
Пример 4. Выполнить умножение −1,4x 2 y 6 (5x 3 y − 1,5xy 2 − 2y 3 )
Умножим одночлен −1,4x 2 y 6 на каждый член многочлена 5x 3 y − 1,5xy 2 − 2y 3 и сложим полученные произведения:
Пример 5. Выполнить умножение
Умножим одночлен на каждый член многочлена
и сложим полученные произведения:
Выполняя короткие решения, результаты записывают сразу друг за другом вместе со знаком полученного члена. Рассмотрим поэтапно, как было выполнено короткое решение данного примера.
Сначала одночлен нужно умножить на первый член многочлена
, то есть на
. Умножение выполняется в уме. Получается результат
. В исходном выражении ставим знак равенства и записываем первый результат:
После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.
Следующим шагом будет умножение одночлена на второй член многочлена
, то есть на
. Получается результат
. Этот результат является положительным, то есть со знаком плюс
. В исходном выражении этот результат записывается вместе с этим плюсом сразу после члена
После этого в исходном выражении никаких знаков ставить нельзя. Нужно сразу приступать к следующему умножению.
Следующим шагом будет умножение одночлена на третий член многочлена
, то есть на
. Получается результат
. Этот результат является отрицательным, то есть со знаком минус. В исходном выражении этот результат записывается вместе со своим минусом сразу после члена
Иногда встречаются выражения, в которых сначала нужно выполнить умножение одночлена на многочлен, затем опять на одночлен. Например:
Умножение также можно было бы выполнить сначала умножив (a + b) на с и полученный результат перемножить с членом 2
В данном случае срабатывает сочетательный закон умножения, который говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий:
a × b × с = (a × b) × с = a × (b × с)
То есть умножение можно выполнять в любом порядке. Это не приведёт к изменению значения изначального выражения.
Умножение многочлена на многочлен
Чтобы умножить многочлен на многочлен, нужно каждый член первого многочлена умножить на каждый член второго многочлена и полученные произведения сложить.
Например, умножим многочлен x + 3 на y + 4
Заключим в скобки каждый многочлен и объединим их знаком умножения ×
Получаем умножение многочлена (x + 3) на одночлен 4. Выполним это умножение. Умножение необходимо продолжать в исходном примере (x + 3)(y + 4) = xy + 3y
Таким образом, при умножении многочлена (x + 3) на многочлен (y + 4) получается многочлен xy + 3y + 4x + 12.
По другому умножение многочлена на многочлен можно выполнить ещё так: каждый член первого многочлена умножить на второй многочлен целиком и полученные произведения сложить.
Решим предыдущий пример, воспользовавшись этим способом. Умножим каждый член многочлена x + 3 на весь многочлен y + 4 целиком и сложим полученные произведения:
В результате приходим к умножению одночлена на многочлен, которое мы изучили ранее. Выполним это умножение:
Получится тот же результат что и раньше, но члены полученного многочлена будут располагаться немного по другому.
Умножение многочлена на многочлен имеет геометрический смысл. Допустим, имеется прямоугольник, длина которого a и ширина b
Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:
То есть выражения (a + x)(b + y) и ab + xb + ay + xy тождественно равны
Представим, что у нас имелся прямоугольник, длиной 6 см и шириной 3 см, и мы увеличили его длину на 2 см, а ширину на 1 см
Достроим отсутствующие стороны и закрасим для наглядности получившиеся прямоугольники:
6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 32
(6 + 2)(3 + 1) = 6 × 3 + 2 × 3 + 6 × 1 + 2 × 1 = 18 + 6 + 6 + 2 = 32
Действительно, в получившемся большом прямоугольнике содержится тридцать два квадратных сантиметра:
Пример 2. Умножить многочлен a + b на c + d
Заключим исходные многочлены в скобки и запишем их друг за другом:
Теперь умножим каждый член первого многочлена (a + b) на каждый член второго многочлена (c + d)
Пример 4. Выполнить умножение (−x − 2y)(x + 2y 2 )
Умножим каждый член многочлена (−x − 2y) на каждый член многочлена (x + 2y 2 )
Результат перемножения членов нужно записывать вместе со знаками этих членов. Рассмотрим поэтапно, как был решён данный пример.
Пример 5. Выполнить умножение (4a 2 + 2ab − b 2 )(2a − b)
Умножим каждый член многочлена (4a 2 + 2ab − b 2 ) на каждый член многочлена (2a − b)
В получившемся выражении можно привести подобные слагаемые:
Пример 6. Выполнить умножение −(a + b)(с − d)
Согласно сочетательному закону умножения, если выражение состоит из нескольких сомножителей, то его можно вычислять в любом порядке.
Либо можно было перемножить −1 с первым многочленом (a + b) и результат перемножить с многочленом (с − d)
Пример 7. Выполнить умножение x 2 (x + 5)(x − 3)
Пример 8. Выполнить умножение (a + 1)(a + 2)(a + 3)
Итак, перемножим (a + 1) и (a + 2)
Полученный многочлен (a 2 + a + 2a + 2) перемножим с (a + 3)
Если быстрое перемножение многочленов на первых порах даётся тяжело, можно воспользоваться подробным решением, суть которого заключается в том, чтобы записать, как каждый член первого многочлена умножается на весь второй многочлен целиком. Такая запись хоть и занимает место, но позволяет свести к минимуму допущение ошибок.
Например, выполним умножение (a + b)(c + d)
Запишем как каждый член многочлена a + b умножается на весь многочлен c + d целиком. В результате придём к умножению одночлена на многочлен, выполнять которое проще:
Такая запись удобна при умножении двучлена на какой-нибудь многочлен, в котором содержится больше двух членов. Например:
Или при перемножении многочленов, содержащих больше двух членов. Например, умножим многочлен x 2 + 2x − 5 на многочлен x 3 − x + 2
Получили привычное для нас умножения одночленов на многочлены. Выполним эти умножения:
В получившемся многочлене приведём подобные члены:
Одночлены, входящие в получившийся многочлен, расположим в порядке убывания степеней. Делать это необязательно. Но такая запись будет красивее:
Вынесение общего множителя за скобки
Мы уже учились выносить общий множитель за скобки в простых буквенных выражениях. Теперь мы немного углубимся в эту тему, и научимся выносить общий множитель за скобки в многочлене. Принцип вынесения будет таким же, как и в простом буквенном выражении. Небольшие трудности могут возникнуть лишь с многочленами, состоящими из степеней.
Пример 2. Вынести общий множитель за скобки в многочлене x 2 + x + xy
Все члены данного многочлены имеют коэффициент единицу. Наибольший общий делитель модулей из этих единиц есть единица. Поэтому числовая часть выносимого за скобки множителя будет единицей. Но единицу в качестве коэффициента не записывают.
Каждый член многочлена представлен в виде произведения множителей, из которых состоят эти члены. Легко заметить, что во всех трёх произведениях общим сомножителем является x. Выделим его:
Этот множитель x и вынесем за скобки. Опять же при вынесении общего множителя за скобки каждое слагаемое исходного выражения делим на этот общий множитель. В нашем случае каждый член многочлена x × x + 1 × x + x × y нужно разделить на общий множитель x
В результате в скобках остаются члены, которые не имеют общих буквенных сомножителей, а модули коэффициентов этих членов не имеют общих делителей, кроме 1.
Пример 2. Вынести общий множитель за скобки в многочлене 15x 2 y 3 + 12xy 2 + 3xy 2
Определим коэффициент общего множителя, выносимого за скобки. Наибольший общий делитель модулей коэффициентов 15, 12 и 3 это число 3. Значит, число 3 будет коэффициентом общего множителя, выносимого за скобки.
Теперь определим буквенную часть общего множителя, выносимого за скобки. Её нужно выбирать так, чтобы в скобках остались члены, которые не содержат общего буквенного множителя.
Перепишем буквенные части исходного многочлена 15x 2 y 3 + 12xy 2 + 3xy 2 в виде разложения на множители. Это позволит хорошо увидеть, что именно можно вынести за скобки:
В итоге общим множителем, выносимым за скобки, будет множитель 3xy 2
Пример 3. Вынести общий множитель за скобки в выражении x 2 + x
В данном случае за скобки можно вынести x
Не следует на письме подробно расписывать содержимое каждого члена, разлагая его на множители. Это легко делается в уме.
Пример 4. Вынести общий множитель за скобки в многочлене 5y 2 − 15y
Пример 5. Вынести общий множитель за скобки в многочлене 5y 2 − 15y 3
Пример 6. Вынести общий множитель за скобки в многочлене 20x 4 − 25x 2 y 2 − 10x 3
Пример 7. Вынести общий множитель за скобки в многочлене a m + a m + 1
Проверка на тождественность
Решение задачи с многочленами порой растягивается на несколько строк. Каждое следующее преобразование должно быть тождественно равно предыдущему. Если возникают сомнения в правильности своих действий, то можно подставить произвольные значения переменных в исходное и полученное выражение. Если исходное и полученное выражение будут равны одному и тому же значению, то можно быть уверенным, что задача была решена правильно.
Допустим, нам нужно вынести общий множитель за скобки в следующем многочлене:
В данном случае за скобки можно вынести общий множитель 2x
2x + 4x 2 = 2 × 2 + 4 × 2 2 = 4 + 16 = 20
Теперь подставим значение 2 в преобразованное выражение 2x(1 + 2x)
2x(1 + 2x) = 2 × 2 × (1 + 2 × 2 ) = 4 × 5 = 20
2x + 4x 2 = 2 × 1 + 4 × 1 2 = 2 + 4 = 6
2x(1 + 2x) = 2 × 1 × (1 + 2 × 1 ) = 2 × 3 = 6
Пример 2. Вычесть из многочлена 5x 2 − 3x + 4 многочлен 4x 2 − x и проверить полученный результат, подставив вместо переменной x произвольное значение.
Видим, что при каждом преобразовании значение выражения при x = 2 не менялось. Это значит, что задача была решена правильно.