Что такое нуклеиновые кислоты

Нуклеиновые кислоты

Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

Содержание

История исследования

Способы выделения

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Нуклеиновые кислоты легко деградируют под действием особого класса ферментов — нуклеаз. В связи с этим при их выделении важно обработать лабораторное оборудование и материалы соответствующими ингибиторами. Так, например, при выделении РНК широко используется такой ингибитор рибонуклеаз как DEPC.

Химические свойства

Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.

Строение

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

ДНК и РНК

Примечания

Литература

См. также

Полезное

Смотреть что такое «Нуклеиновые кислоты» в других словарях:

НУКЛЕИНОВЫЕ КИСЛОТЫ — полинуклеотиды, фосфорсодержащие биополимеры, имеющие универсальное распространение в живой природе. Впервые обнаружены Ф. Мишером в 1868 в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Термин «Н. к.» предложен в 1889.… … Биологический энциклопедический словарь

НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Современная энциклопедия

НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды) высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Большой Энциклопедический словарь

Нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты – дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Иллюстрированный энциклопедический словарь

НУКЛЕИНОВЫЕ КИСЛОТЫ — НУКЛЕИНОВЫЕ КИСЛОТЫ, соединения, состоящие из остатков фосфорной кислоты, пуриновых и пиримидиновых оснований и углевода. Входят в качестве простетической (небелковой) группы в состав т. н. нуклео протеидов (см.), участвуя в построении клеточного … Большая медицинская энциклопедия

НУКЛЕИНОВЫЕ КИСЛОТЫ — НУКЛЕИНОВЫЕ КИСЛОТЫ, химические макромолекулы, присутствующие во всех живых организмах и в вирусах. Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) хранит ГЕНЕТИЧЕСКИЙ КОД, который является системой записи наследственной… … Научно-технический энциклопедический словарь

нуклеиновые кислоты — – высокомолекулярные соединения, мономерами которых служат нуклеотиды … Краткий словарь биохимических терминов

нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Энциклопедический словарь

НУКЛЕИНОВЫЕ КИСЛОТЫ — биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого… … Энциклопедия Кольера

Нуклеиновые кислоты — они же полинуклеотиды, они же биополемеры, построенные из большого числа остатков нуклеотидов; постоянная и необходимая составная часть всех живых систем, которым принадлежит ведущая роль в биосинтезе белка и передаче наследственных признаков… … Начала современного естествознания

Источник

Какие бывают типы нуклеиновых кислот? Что они собою являют?

Содержание:

Нуклеиновые кислоты – важнейшие органические соединения, осуществляющие хранение, передачу и реализацию наследственной информации. Это биополимеры – длинные молекулы, образованные мономерами – нуклеотидами. Нуклеиновые кислоты располагаются в ядре клетки.

Описание нуклеиновых кислот

Структура нуклеотидов

Нуклеотиды – это звено, состоящее из трех компонентов – азотистого основания, углеводной части (остатка моносахарида) и остатка фосфорной (ортофосфорной) кислоты.

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Азотистое основание – производное пурина и пиримидина. Они классифицируются на две группы – мажорные и минорные. Мажорные, или главные основания – соединения пуринового ряда (аденин А и гуанин) и пиримидинового ряда (цитозин Ц, тимин Т и урацил У).

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Минорные основания – гипоксантин, 5-метилцитозин, 6-N-метиладенин, 1-N-метилгуанин и др.

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Углеводная часть может состоять из рибозы или дезоксирибозы. Она представляет собой остаток моносахарида. В нуклеиновых кислотах они находятся в циклической форме.

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Связь между углеводной частью и азотистым основанием называется гликозидной.

Остаток кислоты связывается с пятым углеродным атомом в сахаре и образует сложноэфирную связь.

Какие существуют типы нуклеиновых кислот

Дезоксирибонуклеиновая кислота ДНК

Рибонуклеиновая кислота РНК

Существует несколько типов РНК:

иРНК (информационная РНК) – РНК, считывающая информацию с ДНК;

тРНК (транспортная РНК) – РНК, которая считывает информацию с иРНК и образует антикодон;

рРНК (рибосомальная РНК) – РНК, с помощью которого происходит синтез белка.

Сходства и различия ДНК и РНК

Сходства ДНК и РНК:

структуры включают в себя остаток ортофосфорной кислоты;

Источник

Нуклеиновые кислоты

Функции нуклеиновых кислот

НУКЛЕИНОВЫЕ КИСЛОТЫ представляют собой усложнённые высокомолекулярные соединения, которые имеются во всех без исключения клетках, присущих живым организмам и являются материальными носителями всей наследственной информации.

Нуклеиновым кислотам принадлежит ведущую роль не в одном лишь хранении, но ещё и в передаче важной информации потомкам, а также реализации ее на протяжении индивидуального развития буквально каждого организма.

Нуклеиновые кислоты учёными были открыты уже в середине 60-тых годов 19 века (открытие сделал швейцарский ученый Ф. Мишер).

Во время опыта по обработке клетки гноя пепсином — ферментом из желудочного сока — Ф. Мишер с удивлением обнаружил, что ферментом переваривается не все клеточное содержимое, в их ядрах остаётся не разрушенным некое вещество.

Продолжив свои эксперименты на иных объектах, Мишер убедился в том, что им открыто новое вещество, которое сильно отличается от всех известных ранее веществ, имеющих биологическое происхождение (углеводов, белков, жиров и др.) собственным химическим строением.

Данное вещество Мишером было названо нуклеином, поскольку он нашёл его в клеточных ядрах (ядро — с латыни «нуклеус»). Но в связи со слабым уровнем тогдашнего развития лабораторного оборудования установить точно химическое строение открытого нуклеина учёный не смог.

Поднакопив довольно большое количество нуклеина, Мишер лишь смог обнаружить, что в составе его важная роль отводится какой-то неизвестной и очень сложной в плане своего строения кислоте.

Лишь намного позже было установлено, что нуклеин, открытый Мишером, состоял из прочного соединения белка с особенными по-настоящему сложными для проведения структурного анализа видами кислот, которые получили название «нуклеиновые кислоты».

Ещё одной составной частью нуклеинового вещества были белковые молекулы, так что, по сути, нуклеин из себя представлял химическое вещество, которое сейчас называется нуклеопротеином, либо хроматином.

Лишь по завершению 30-тых годов 20 века химический состав НК был уточнен, а кроме того, установлено, что существует два типа кислот — дезоксирибонуклеиновая (то есть ДНК) и рибонуклеиновая (или РНК), которые входят в клеточный состав абсолютно всех живых существ на планете.

Но, несмотря на это, детали строения нуклеиновых кислот оставались не совсем ясными вплоть до наступления 20-го века. В 50-тых гг., по словам ученого Д. Уотсона из Америки, установившего совместно с англичанином О. Криком базовые принципы ДНК-строения, относительно ДНК, по сравнению с белками, имелось крайне мало с точностью установленных данных.

Их изучением занимались лишь считанные химики, и если исключить тот факт, что НК представляют собой весьма большие молекулы, которые построены из мельчайших строительных блоков — так называемых нуклеотидов, о их химии не известно было ничего особенного, за что можно ухватиться генетику.

Даже более того, химики-органики, которые работали с ДНК, практически никогда генетикой не интересовались.

Роль нуклеиновых кислот

Довольно сложным был и сам путь к пониманию роли нуклеиновых кислот в жизни клеток.

Довольно скоро после открытия Мишером нуклеина биологи обнаружили, что в клеточных ядрах имеются особенные морфологические структуры, которые отчетливо заметны под микроскопом в момент деления клеток, они получили название «хромосомы».

Эти структуры закономерно распределялись по так называемым дочерним клеткам в ходе процесса клеточного деления. В первом же десятилетии века 20-ого стали высказываться предположения, согласно которым именно хромосомы — те самые носители наследственности, но сделать правильный дальнейший шаг — то есть связать наследственность с нуклеиновыми кислотами, находящимися в хромосомах, никто не догадался вплоть до 40-вых- 50-тых годов 20-го века.

Даже более того, со временем роль нуклеиновых кислот стали значительно преуменьшать. В конце 19-го века некоторые ученые на этот счет высказывали вполне разумные предположения. К примеру, известные биологи Рихард и Оскар Гертвиги в своих работах писали о возможности роли кислот в передаче важных наследственных признаков.

В 1897-мом году в статье «Нуклеины», размещённой в «Энциклопедическом словаре» Брокгауза и Эфрона было отмечено, что нуклеин имеет огромное распространение и везде, где присутствуют клеточные ядра, есть и нуклеин…

А ещё ему приписывается поистине выдающееся значение в размножении и развитии клеток. Однако позже эти в действительности правильные взгляды оказались забыты. Учёная мысль вплоть до 50-тых годов 20 века была скованной успехами в изучении свойств и структуры белковых молекул, а нуклеиновые кислоты же получили второстепенную роль.

В распространении всеобщего убеждения в том, что основополагающая роль в наследственности отводится именно белкам, определяющее значение сыграло то обстоятельство, что видный советский ученый Н. Кольцов, который предсказал механизм осуществления передачи различных наследственных признаков посредством специфического строения полимерных макромолекул, совершенно ошибочно считал, что роль данных «наследственных молекул» отводится белкам.

Строение нуклеиновых кислот

И только после открытия 2-ойной спирали ДНК в 1953-ем году и установления важности роли нуклеиновых кислот в передаче наследственности пришла пора расцвета исследований этих кислот.

Удивительно быстро (меньше чем за 2 десятилетия) полностью было установлено строение двух типов молекул нуклеиновых кислот (ДНК и РНК) и доказано, что это в них сосредоточены основные структуры наследственности — так называемые гены.

Выяснена конкретная роль буквально каждого отдельного вида НК в передаче тех или иных наследственных свойств, а также управлении клеточной жизнедеятельностью, осуществлен поначалу искусственный молекулярный синтез ДНК и РНК вне живых клеток организмов.

После чего разработаны методы по осуществлению искусственного синтеза частей данных молекул — генов. На сегодняшний день идёт разработка способов внедрения чужеродных участков молекул ДНК в живые клетки в целях исправления тех или иных наследственных дефектов.

Наконец, надо отметить, что на протяжении последних лет препараты НК начали применять и непосредственно в целях лечения больных, которые страдают некоторыми тяжелыми формами кроветворных нарушений и ещё рядом иных болезней.

Например, установлено, что препараты НК имеют способность плодотворность деятельности костного мозга, в значительной мере способствуют коррекции выраженных нарушений обмена фосфора, приводящих к рахиту.

Поэтому изучение этих кислот является исключительно важным не только для правильного понимания основных моментов в жизни организмов и клеток, но и для проникновения в суть способности сохранять постоянными свойства в целом ряду поколений, роль в делении клеток, управлении всеми протекающими в организмах биохимическими реакциями, способности логично отвечать на раздражения, которые вызываются внешней в отношении организма средой и т. д.

Изучение нуклеиновых кислот, кроме того, создает возможности и для успешного практического использования этих кислот в медицине. Они — наибольшие молекулы в клетках у живых организмов и внешне представляют собой полимеры линейного типа с огромным молекулярным весом.

В клетках НК многократно скручены (иначе говоря, спирализованы) и образуют довольно компактные структуры, позволяющие им занимать сравнительно небольшой объем, однако если разложить молекулы ДНК в длину (всего лишь одной человеческой клетки), то получились бы цепи, чья длина составила несколько метров.

Только этот один факт уже говорит о сложности строения нуклеиновых кислот. Но как оказалось, основной их принцип строения довольно-таки прост. Цепи кислот состоят из чередующихся звеньев — так называемых нуклеотидов, чьё специфическое чередование и определяет запись всей наследственной информации в каждой клетке.

Каждые 3 последовательно располагающихся нуклеотида кодируют одну какую-то аминокислоту, а порядок последовательности нуклеотидов в ДНК-цепях у каждого организма поистине уникален, как и уникальна сама по себе наследственная информация у любого из видов организмов.

В свою очередь нуклеотиды тоже имеют достаточно сложное строение и состоят из 3-ех соединенных меж собой молекул: 5-тиуглеродного сахара (так называемой пентозы), азотистого основания, а также остатка фосфорной кислоты. А названия нуклеотидам даются по имени конкретного азотистого основания, которое входит в их состав.

В строении молекулы ДНК встречается 4 основных вида азотистых оснований: это аденин (А), цитозин (Ц), гуанин (Г) и тимин (Т). В состав молекулы РНК тимин заменяет другое, близкое к нему по строению основание — это урацил (У). Ещё одним отличием ДНК и РНК становится то, что включённые в состав ДНК нуклеотиды содержат в себе 5-тичленный сахар — так называемую дезоксирибозу, а в РНК в наличие имеется иной углевод — рибоза.

В клетках буквально каждого из высших организмов есть ядро, которое от цитоплазмы отграничено особой оболочкой. Потому данные организмы названы были эукариоты (от греческого «эу» — значит «собственно», и «карио» — значит «ядро»).

Данные нити, скручиваясь многократно, формируют хромосомы. Помимо того, в клетках высших организмов — то есть эукариотов — ДНК обнаруживается в составе целого ряда разного рода внутриклеточных образований.

В большинстве случаев ДНК молекула выстроена из 2-ух полинуклеотидных цепей, которые скручены друг с другом. Данные цепи между собой соединяются по строго установленным правилам: тимин может соединяться с адештном и лишь с аденином, а тозин — с гуанином и т. п.

Строго установленные правила сочетания различных оснований в пары (иначе говоря, комплементарность аденина тимину и цитозина гуанину) понятными стали лишь после изучения точных размеров 2-ойной ДНК спирали.

Оказалось, что по всей длине диаметр 2-ойной спирали постоянен. Обеспечено постоянство данного размера спирали обеспечено может быть лишь в случае единственного сочетания оснований в паре. Лишь в том случае, если тимин соединяется с аденином, а цитозин с гуанином, могут получиться пары оснований, имеющих одинаковую длину.

Перед началом деления клеток происходит их удвоение (то есть репликация) ДНК молекул. Данный процесс представляет собой довольно сложную цепь одну за другой протекающих реакций, в итоге которых на материнских исходных молекулах ДНК происходит синтезирование их точных дочерних копий.

РНК также присутствуют во всех клетках живых организмов, при этом у части вирусов они являются одним единственным видом НК. Рибонуклеиновые кислоты исполняют важнейшую роль — обеспечивают перенос важной генетической информации непосредственно от ДНК к белкам. В живых организмах присутствует довольно большое количество разных белков, каждый из них выполняет чёткие функции.

Причём функциональные возможности, а также специализированность конкретного белка определяется его строением и, как правило, тем, в какой именно последовательности у него в молекуле располагаются основные единицы его структуры — аминокислоты.

Нуклеиновые кислоты — это основные участники центрального жизненного акта — синтеза молекул белка. Все, что требуется клетке для нормальной жизни, изначально запрограммировано на отрезках ДНК молекулы — то есть генах, что располагаются главным образом в ядре клетки.

Как раз они и являются хранителями всех эволюционных жизненных достижений, зафиксированных на языке генетического кода. Однако сами по себе гены белка не синтезируют. Информация, записанная в них, реализуется молекулами РНК.

Прежде чем построить белки, снимаются так называемые «чертежи» гена: на ДНК молекуле синтезируется информационной РНК молекула, являющаяся её точной копией — то есть зеркальным отражением скопированного гена. После этого молекулы информационной РНК переходят в цитоплазму, доставляя туда «приказы» генов.

Роль так называемых «переводчиков» с языка непростого генетического кода на рабочий язык аминокислот выполняется молекулами РНК иного вида — транспортными.

Маленькие по своему размеру и удельному молекулярному весу эти молекулы имеют способность различать необходимые аминокислоты, подтаскивать и присоединять их к себе, транспортировать к рибосоме.

Буквально каждой из аминокислот соответствует собственная транспортная РНК. То есть, в клетке присутствует, по меньшей мере, два десятка видов РНК транспортных в соответствии с числом аминокислот.

Процесс распознавания транспортными РНК «собственных» аминокислот идёт при помощи специальных ферментов (коих также существует не менее 20-ти видов), управляющих аминокислотным прикреплением к соответствующим РНК транспортного типа.

Молекула РНК-транспортной, которая соединена с аминокислотой, подплывая к рибосоме, воссоединяется с ней. Уже в следующее мгновение сформировавшаяся матрица (то есть информационная РНК) двигается по рибосоме на определённое расстояние, что соответствует участку, на котором записан шифр присоединённой аминокислоты, словно подставляя участок для прочтения, на котором закодирована определённая аминокислота.

РНК информационная так продвигается до тех самых пор, пока буквально вся матрица не будет прочитанной рибосомой, а молекула соответствующего ей белка в полной мере синтезированной.

1-рвая транспортная аминокислота, которая выполнила свою задачу, сразу же покидает рибосому, освободив место для последующей.

Полностью освободившиеся от аминокислотного груза транспортные РНК постепенно уходят в цитоплазму, где их ожидают молекулы ферментов, дабы соединить со следующими порциями аминокислот. Так как в клетке, пока та живет, необходимы всё новые белки.

Существует и еще один тип РНК — рибосомные, составляющие основную массу. Их биологическая роль в настоящее время остаётся до конца не выясненной. Известно только, что нарушение целостности рибосомных РНК молекул приводит к нарушению активности рибосом.

Источник

Нуклеиновые кислоты.

Нуклеиновые кислоты – природные высокомолекулярные соединения (полинуклеотиды), которые являются важнейшими компонентами биохимических процессов, протекающих в организме человека, играют роль в хранении и передачи наследственной информации.

Строение нуклеиновых кислот.

Строение нуклеиновых кислот может объяснить гидролиз. При полном гидролизе образуется смесь пиримидиновых и пуриновых оснований, моносахарид и фосфорная кислота.

В качестве моносахарида выступает одно из этих соединений:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

При частичном гидролизе продуктом реакции является смесь нуклеотидов, молекулы которых построены из остатков фосфорной кислоты, моносахарида и азотистого основания. Остаток фосфорной кислоты связан с 3-м или 5-ым атомом углерода, а остаток основания – с 1ым атомом углерода моносахарида. Общая формула нуклеотидов:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Где Х = ОН для рибонуклеотидов, построенных на основе рибозы или Х = Н – для дезаксирибонуклеотидов, построенных на основе дезоксирибозы. В зависимости от типа азотистого основания различают пуриновые и пиримидиновые нуклеотиды.

Нуклеотид – основная структурная единица нуклеиновых кислот – мономер.

Если в состав входят рибонуклеотиды, то такую кислоту называют рибонуклеиновой (РНК), а если из дезоксирибонуклеотидов, то – дезоксирибонуклеиновой кислотой (ДНК).

В РНК входят: аденин, гуанин, цитозин и урацил.

В ДНК входят основания, содержащие аденин, гуанин, цитозин и тимин.

Свойства ДНК и РНК зависят от последовательности оснований в полинуклеотидной цепи и пространственным строением цепи. Именно последовательность несет в себе уникальный генетический код, а остатки моносахаридов и фосфорной кислоты играют структурную роль.

При частичном гидролизе отщепляется остаток фосфорной кислоты и образуются нуклеозиды, которые состоят из остатков пуринового или пиримидинового основания, связанного с остатком миносахарида:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

В молекуле РНК и ДНК нуклеотиды связаны в единую полимерную цепь:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Пространственная структура полинуклеотидных цепей была определена рентгеноструктурным анализом. В 1953 года Дж. Уотсон и Ф. Крик предложили модель трехмерной структуры ДНК, принципы которой заключались в следующем:

1. Молекула ДНК представляет собой двойную спираль с состоит из двух полинуклеотидных цепей, закрученных в противоположные стороны.

2. Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфора и дезоксирибозы – снаружи.

3. На полный виток спираль приходится 10 нуклеотидов.

4. Две спирали связаны друг с другом водородными связями. Важное свойство ДНК – избирательность в образовании связей – комплементарность. Причем размеры оснований подобраны так, что тимин связывается только с аденином, а цитозин – с гуанином.

Две спирали в ДНК комплементарны друг другу. Последовательность оснований в одной цепи определяет последовательность в соседней.

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

В каждой паре оснований, связанных друг с другом водородными связями, одно основания является пуриновым, в другом – пиримидиновым.

Двухспиральная молекула ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликация).

Перед удвоением водородные связи разрываются, и 2 цепи расходятся и раскручиваются. И после этого каждая цепь становится матрицей для образованием новой комплементарной цепи. Синтез новых цепей происходит при участии ДНК-полимеразы.

Молекула РНК состоит из одной полинуклеотидной цепи, которая не имеет строго определенной последовательности. Она может «складываться» сама на себя и образовывать отдельные двухцепочечные участки с водородными связями между пуриновыми и пиримидиновыми основаниями:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Биологическая роль нуклеиновых кислот.

ДНК – главная молекула в живом организме. Она хранит генетическую информацию, которая передается из поколения в поколение. В ДНК закодирован состав всех белков организма.

В качестве посредника между ДНК и местом синтеза белка выступает РНК, где происходит 2 процесса:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

Клетки содержат 3 типа РНК, которые выполняют различные функции:

1. Информационная или матричная РНК (мРНК) считывает и переносит генетическую информацию от ДРК к рибосомам, где происходит синтез определенной структуры белка. Молекула мРНК под действием РНК-полимеразы синтезируется на отдельном участке одной из 2х цепей ДНК, причем последовательность в РНК строго комплементарная последовательности в ДНК:

Что такое нуклеиновые кислоты. Смотреть фото Что такое нуклеиновые кислоты. Смотреть картинку Что такое нуклеиновые кислоты. Картинка про Что такое нуклеиновые кислоты. Фото Что такое нуклеиновые кислоты

2. Транспортная РНК (тРНК) переносит аминокислоты к рибосомам, где они соединяются пептидными связями в определенной последовательности.

3. Рибосомальная РНК (рРНК) участвует в синтезе белков в рибосомах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Типы нуклеиновых кислот
Азотистые основанияПурины (Аденин, Гуанин) | Пиримидины (Урацил, Тимин, Цитозин)
НуклеозидыАденозин | Гуанозин | Уридин | Тимидин | Цитидин
Нуклеотидымонофосфаты (АМФ, ГМФ, UMP, ЦМФ) | дифосфаты (АДФ, ГДФ, УДФ, ЦДФ) | трифосфаты (АТФ, ГТФ, УТФ, ЦТФ) | циклические (цАМФ, цГМФ, cADPR)
Рибонуклеиновые кислотыРНК | мРНК | тРНК | рРНК | антисмысловые РНК | gRNA | микроРНК | некодирующие РНК | piwi-interacting RNA | shRNA | малые интерферирующие РНК | малые ядерные РНК | малые ядрышковые РНК | тмРНК
Дезоксирибонуклеиновые кислотыДНК | кДНК | Геном | msDNA | Митохондриальная ДНК
Аналоги нуклеиновых кислотen:glycerol nucleic acid | en:locked nucleic acid | ПНК | ТНК | Морфолино
Типы векторовen:phagemid | Плазмиды | Фаг лямбда | en:cosmid | en:P1 phage | en:fosmid | en:Bacterial artificial chromosome | en:Yeast artificial chromosome | en:Human artificial chromosome