Что такое нулевой и ненулевой вектор
Нуль-вектор
Нулевой вектор (нуль-вектор) — вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается или
.
С нулевым вектором не связывают никакого направления в пространстве (т.е. его можно считать направленным во все стороны). Нулевой вектор принято считать сонаправленным любому вектору. Считается, что нулевой вектор одновременно параллелен и перпендикулярен любому вектору пространства.
Все координаты нулевого вектора в любой аффинной системе координат равны нулю.
Для любого вектора
Для любого числа c
Нулевой вектор равен сумме любых двух противоположных векторов:
.
См. также
Ссылки
Полезное
Смотреть что такое «Нуль-вектор» в других словарях:
нуль-вектор — нуль вектор, нуль вектора … Орфографический словарь-справочник
нуль-вектор — nulinis vektorius statusas T sritis fizika atitikmenys: angl. null vector; zero vector vok. Nullvektor, m rus. нулевой вектор, m; нуль вектор, m pranc. vecteur nul, m; vecteur zéro, m … Fizikos terminų žodynas
нуль-вектор — (2 м), Р. нуль ве/ктора … Орфографический словарь русского языка
нуль-вектор — а, ч., мат. Вектор, що є тотожним перетворенням простору … Український тлумачний словник
Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор … Википедия
Нуль — Нуль: В Викисловаре есть статья «нуль» Нуль, 0 (число) целое число, разделяющее на числовой прямой положительные и отрицательные числа … Википедия
Вектор-функция — Вектор функция функция, значениями которой являются векторы в векторном пространстве двух, трёх или более измерений. Аргументами функции могут быть: одна скалярная переменная тогда значения вектор функции определяют в некоторую… … Википедия
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
Вектор Киллинга — Поле Киллинга векторное поле скоростей (локальной) однопараметрической группы движений риманова или псевдориманова многообразия. Другими словами, поток, который генерируется векторным полем Киллинга, задает непрерывное однопараметрическое… … Википедия
Векторное произведение векторов
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение векторного произведения
Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.
Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.
Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.
Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.
Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.
Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.
Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.
Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.
Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.
Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.
Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.
В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.
И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.
Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!
Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:
Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.
Векторное произведение двух векторов a =
Векторное произведение векторов →a и →b обозначается как [→a • →b].
Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.
Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.
Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:
Координаты векторного произведения
Рассмотрим векторное произведение векторов в координатах.
Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.
В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор
→i, →j, →k — координатные векторы.
Это определение показывает нам векторное произведение в координатной форме.
Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:
Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:
Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.
Свойства векторного произведения
Векторное произведение в координатах представляется в виде определителя матрицы:
На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:
, где λ произвольное действительное число.
Для большей ясности докажем свойство антикоммутативности векторного произведения.
Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому
что доказывает свойство антикоммутативности векторного произведения.
Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.
Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).
Примеры решения задач
Пример 1
а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.
б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.
а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:
Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.
б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:
Пример 2
Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.
По условию снова нужно найти длину векторного произведения. Используем нашу формулу:
Согласно ассоциативным законам, выносим константы за переделы векторного произведения.
Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.
Пример 3
Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.
Сначала найдём векторы:
Затем векторное произведение:
Вычислим его длину:
Подставим данные в формулы площадей параллелограмма и треугольника:
Геометрический смысл векторного произведения
По определению длина векторного произведения векторов равна
А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.
Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.
Физический смысл векторного произведения
В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.
Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].
Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №17. Вектор в пространстве
Перечень вопросов, рассматриваемых в теме:
знакомство с правилами действий с векторами в пространстве.
— познакомиться с основными понятиями, используемыми в данной теме;
— сформировать представление о векторных и скалярных величинах;
— научиться выполнять действия с векторами, преобразовывать векторные выражения.
учащиеся научатся различать векторные и скалярные величины, выполнять действия с векторами в пространстве и применять законы действий с векторами для преобразования и упрощения векторных выражений.
Сортировка по категориям скалярных и векторных величин. Отличительные особенности векторных величин. Повторяется определение вектора из курса планиметрии.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса2016. С.88-93.
Теоретический материал для самостоятельного изучения:
2)Два ненулевых вектора называются коллинеарными, если они лежат на одной или на параллельных прямых. Пусть два ненулевых вектора и
коллинеарные. Если при этом лучи АВ и СD сонаправлены, то
и
называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы
и
называются противоположно направленными.
Нулевой вектор условимся считать сонаправленным с любым вектором. Запись
означает, что векторы
и
сонаправлены, а запись
— что векторы с и d противоположно направлены.
3)Векторы называются равными, если они сонаправлены и их длины равны. От любой точки можно отложить вектор, равный данному, и притом только один.
Интерактивная модель «Равные, противоположные, нулевые, сонаправленные, противоположно направленные векторы «.
4)Действия над векторами. Сложение векторов по правилу треугольника.
Для этого нужно от произвольной точки пространства отложить вектор , равный
, затем от точки В отложить вектор
, равный
. Вектор
называется суммой
и
. Для любых трех точек А, В и С имеет место равенство
+
=
5)Сложение векторов по правилу параллелограмма:
Для этого векторы откладывают от одной точки. Это правило пояснено на рисунке.
Интерактивная модель «Законы действия с векторами».
Сумма нескольких векторов в пространстве находится так же, как и на плоскости и не зависит от порядка слагаемых.
Интерактивная модель «Правило многоугольника».
6)Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены.
Нулевой вектор
Нулевой вектор (нуль-вектор) — вектор, начало которого совпадает с его концом. Нулевой вектор имеет норму 0 и обозначается или
.
Нулевой вектор определяет тождественное движение пространства, при котором каждая точка пространства переходит в себя.
С нулевым вектором не связывают никакого направления в пространстве. Нулевой вектор принято считать сонаправленным любому вектору. Можно считать, что нулевой вектор одновременно параллелен и перпендикулярен любому вектору пространства (легко выводится из определения).
Все координаты нулевого вектора в любой аффинной системе координат равны нулю.
С точки зрения линейной алгебры, в линейном пространстве должен существовать специальный вектор , обладающий следующими свойствами:
Для любого вещественного числа
Для всякого вектора , найдется такой вектор
, что:
.
См. также
Ссылки
Полезное
Смотреть что такое «Нулевой вектор» в других словарях:
нулевой вектор — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN zero vector … Справочник технического переводчика
нулевой вектор — nulinis vektorius statusas T sritis fizika atitikmenys: angl. null vector; zero vector vok. Nullvektor, m rus. нулевой вектор, m; нуль вектор, m pranc. vecteur nul, m; vecteur zéro, m … Fizikos terminų žodynas
Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор … Википедия
Вектор — Вектор многозначный термин; величина, характеризующаяся размером и направлением. В Викисловаре есть статья «вектор» … Википедия
Вектор (значения) — Вектор: Содержание 1 В биологии 2 В информатике 3 В математике 4 В физике … Википедия
Вектор (геометрия) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия
Вектор (Геометрические представления) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых точка A называется его началом, а вторая B его концом. Содержание 1 Определение … Википедия
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
вектор — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=5044] вектор Упорядоченный набор из некоторого количества независимых действительных чисел (таково одно из многих определений — то, которое принято в экономико математических… … Справочник технического переводчика
Вектор — [vector] упорядоченный набор из некоторого количества независимых действительных чисел (таково одно из многих определений то, которое принято в экономико математических методах). Например, суточный план цеха может быть записан 4 мерным вектором… … Экономико-математический словарь