Что такое объем в алгебре
Объемы фигур (ЕГЭ 2022)
Так же, как у плоских фигур есть такая характеристика, как площадь, у объемных тел есть… объем.
И так же, как рассуждения о площади начинаются с квадрата (1×1), рассуждения об объеме начинаются с куба (1x1x1).
Читай эту статью и научишься находить объемы различных фигур!
Объемы фигур — коротко о главном
Объем куба
Объем призмы
Объем пирамиды
Объем шара
Объем цилиндра
\( R\) – радиус основания
Объем конуса
\( R\) – радиус основания
Объем куба
Как было сказано выше, рассуждения об объеме начинаются с куба \( \displaystyle 1х1х1\).
Объем куба с ребром \( \displaystyle \text<1>\) метр равен \( \displaystyle \text<1>\) кубическому метру.
Помнишь, квадратный метр – это была площадь квадрата \( \displaystyle 1х1\) и обозначалась она \( \displaystyle \text<1>\) м.кв.
Ну вот, а объем куба с ребром \( \displaystyle \text<1>\) называется кубическим метром и обозначается \( \displaystyle \text<1>\) м.кв.
Что же такое \( \displaystyle \text<2>\) м.кв.? А вот, смотри:
Это два кубика с ребром \( \displaystyle \text<1>\).
А чему равен объем куба с ребром \( \displaystyle \text<2>\)?
Сколько в большом кубе (с ребром \( \displaystyle \text<2>\)) маленьких (с ребром \( \displaystyle \text<1>\))?
Конечно, \( \displaystyle \text<8>\). Поэтому объем куба с ребром \( \displaystyle \text<2>\) равен \( \displaystyle \text<8>\) кубическим метрам, то есть \( \displaystyle \text<8>\) м.кв.
А ведь \( \displaystyle \text<8>\) это \( \displaystyle \text<23>\).
И представь себе, это для любого куба, даже с ребром \( \displaystyle \sqrt<239>\) верна формула.
Эту формулу легко доказать для целых a (мы уже видели доказательство для \( \displaystyle a=2\)), чуть сложнее – для рациональных и совсем сложно для иррациональных \( \displaystyle a\).
Но мы пойдем дальше.
Подобным же образом получается формула объема для прямоугольного параллелепипеда.
Объемы геометрических тел
Объемы геометрических тел
Раньше для определения объемов геометрических тел традиционно использовались интегралы. Сегодня есть и другие подходы, которые подробно представлены в учебниках нашей корпорации. В одном из вебинаров «Российского учебника» учитель высшей категории Алексей Доронин рассказал о методах определения объема разных геометрических тел с помощью принципа Кавальери и других аксиом.
Определение объема
Объем можно определить как функцию V на множестве многогранников, удовлетворяющую следующим аксиомам:
Принцип Кавальери (итальянского математика, ученика Галилея). Если при пересечении двух тел плоскостями, параллельными одной и той же плоскости, в сечениях этих тел любой из плоскостей получаются фигуры, площади которых относятся как m : n, то объемы данных тел относятся как m : n.
В открытом банке заданий ЕГЭ есть много задач для отработки этого способа определения объема.
Примеры
Задача 1. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.
Задача 2. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).
Задача 3. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).
Разберем, как можно вычислять объемы изучаемых в школе фигур.
Объем призмы
В представленном случае известны площадь основания и высота призмы. Чтобы найти объем, используем принцип Кавальери. Рядом с призмой (Ф2) поместим прямоугольный параллелепипед (Ф1), в основании которого — прямоугольник с такой же площадью, как у основания призмы. Высота у параллелепипеда такая же, как у наклонного ребра призмы. Обозначим третью плоскость (α) и рассмотрим сечение. В сечении виден прямоугольник с площадью S и, во втором случае, многоугольник тоже с площадью S. Далее вычисляем по формуле:
Объем пирамиды
Лемма: две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики. Докажем это, используя принцип Кавальери.
Возьмем две пирамиды одинаковой высоты и заключим их между двумя параллельными плоскостями α и β. Обозначим также секущую плоскость и треугольники в сечениях. Заметим, что отношения площадей этих треугольников связаны непосредственно с отношением оснований.
Известно, что объем любой пирамиды равен одной трети произведения площади основания на высоту. Данной теоремой апеллируют довольно часто. Однако откуда в формуле объема пирамиды появляется коэффициент 1/3? Чтобы понять это, возьмем призму и разобьем ее на 3 треугольные пирамиды:
Объем цилиндра
Возьмем прямой круговой цилиндр, в котором известны радиус основания и высота. Рядом поместим прямоугольный параллелепипед, в основании которого лежит квадрат. Рассмотрим:
Объем конуса
Конус лучше всего сравнивать с пирамидой. Например, с правильной четырехугольной пирамидой с квадратом в основании. Две фигуры с равными высотами заключаем в две параллельные плоскости. Обозначив третью плоскость, в сечении получаем круг и квадрат. Представления о подобиях приводят к числу π.
Объем шара
Объем шара — одна из наиболее сложных тем. Если предыдущие фигуры можно продуктивно разобрать за один урок, то шар лучше отложить на последующее занятие.
Итак, чтобы найти объем нового, не изученного геометрического тела, нужно сравнить его с тем телом, которое наиболее на него похоже. Многочисленные примеры заданий из открытого банка задач показывают, что в работе с фигурами имеет смысл использовать представленные формулы и аксиомы.
Формулы вычисления объема всех геометрических фигур
Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.
Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий понятие объёма вводится аналогично понятию площади поверхности.
Все формулы объема геометрических тел
Объем куба
Объем куба равен кубу длины его грани.
Формула объема куба:
Объем призмы
Объем призмы равен произведению площади основания призмы, на высоту.
Формула объема призмы:
Объем параллелепипеда
Объем параллелепипеда равен произведению площади основания на высоту.
Формула объема параллелепипеда:
Объем пирамиды
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).
Объем усеченной пирамиды
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
Формула объема усеченной пирамиды:
Объем цилиндра
Объем цилиндра равен произведению площади его основания на высоту.
Объем правильной треугольной пирамиды
Формула объема правильной треугольной пирамиды:
Объем конуса
Объем круглого конуса равен трети произведения площади основания S на высоту H.
Объем усеченного конуса
Объем усеченного конуса равен разности объемов двух полных конусов.
Формула объема усеченного конуса:
Объем тетраэдра
Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.
Объем шара
Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.
Объем шарового сегмента и сектора
Формула объема шарового сегмента:
Формула объема шарового сектора:
Объем прямоугольного параллелепипеда
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Формула объема прямоугольного параллелепипеда:
Формула объема.
Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.
Фигура | Формула | Чертеж |
---|---|---|