Что такое обратная матрица пример
Как найти обратную матрицу?
Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.
Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число 




Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.
Есть? Тогда поехали дальше. А хотя… ехать могут все, если что-то не знаете, я буду ставить нужную ссылку по ходу объяснений.
Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований.
Сегодня мы изучим первый, более простой способ.
Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу 






Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.
Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом
Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.
Найти обратную матрицу для матрицы
Решаем. Последовательность действий удобно разложить по пунктам.
1) Сначала находим определитель матрицы.
Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?
Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.
В рассматриваемом примере, как выяснилось, 
2) Находим матрицу миноров 
Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель.
Матрица миноров имеет такие же размеры, как и матрица 

Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.
Возвращаемся к нашей матрице 
Сначала рассмотрим левый верхний элемент: 
Как найти его минор?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент: 
Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров: 
Рассматриваем следующий элемент матрицы 

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент: 
То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу: 
Аналогично рассматриваем элементы второй строки и находим их миноры: 

Готово.


3) Находим матрицу алгебраических дополнений 
Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел: 
Именно у этих чисел, которые я обвел в кружок!


4) Находим транспонированную матрицу алгебраических дополнений 
Что такое транспонирование матрицы, и с чем это едят, смотрите в лекции Действия с матрицами.


5) Ответ.
Вспоминаем нашу формулу 
Всё найдено!
Таким образом, обратная матрица:
Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами.
Как проверить решение?
Необходимо выполнить матричное умножение 
Проверка:
Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.
Таким образом, обратная матрица найдена правильно.
Если провести действие 
Переходим к более распространенному на практике случаю – матрице «три на три»:
Найти обратную матрицу для матрицы
Алгоритм точно такой же, как и для случая «два на два».
Обратную матрицу найдем по формуле: 


1) Находим определитель матрицы.

Здесь определитель раскрыт по первой строке.
Также не забываем, что 
2) Находим матрицу миноров 
Матрица миноров имеет размерность «три на три» 
Я подробно рассмотрю парочку миноров:
Рассмотрим следующий элемент матрицы: 
МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Оставшиеся четыре числа записываем в определитель «два на два» 
Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить: 
Всё, минор найден, записываем его в нашу матрицу миноров:
Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.
Ну и для закрепления – нахождение еще одного минора в картинках: 
Остальные миноры попробуйте вычислить самостоятельно.
Окончательный результат:


То, что все миноры получились отрицательными – чистая случайность.
3) Находим матрицу алгебраических дополнений 
В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов: 
В данном случае:


4) Находим транспонированную матрицу алгебраических дополнений 


5) Ответ:
Проверка:
Таким образом, обратная матрица найдена правильно.
Как оформить решение на чистовик? Примерный образец чистового оформления задания можно найти на странице Правило Крамера. Метод обратной матрицы в параграфе, где идет речь о матричном методе решения системы линейных уравнений. По существу, основная часть упомянутой задачи – и есть поиск обратной матрицы.
Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).
В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.
Иногда обратную матрицу требуется найти методом Гаусса-Жордана, но второй способ доступен для студентов с приличной техникой элементарных преобразований.
Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Обратная матрица.
Метод обратной матрицы.
Метод обратной матрицы – это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.
Суть метода обратной матрицы.
Пусть есть система n линейных уравнений с n неизвестными:
Такую систему можно записать как матричное уравнение A* X = B,
где 


Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0. Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A. Если det A ≠ 0, то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0, то такая система методом обратной матрицы не решается.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы:
Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C.
Нахождение обратной матрицы.
Нахождение обратной матрицы – это лучше всего делать с помощью присоединённой матрицы.
Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.
Пример нахождения обратной матрицы.
Задание. Для матрицы 
Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:
Из 1й строки вычитаем 2ю:
От второй строки отнимаем 2 первых:
1ю и 2ю строки меняем местами:
От 2й строки отнимаем 2 первых:
Вторую строку умножаем на (-1), а к первой строке добавляем 2ю:
Итак, слева имеем единичную матрицу, а, значит, матрица, которая стоит справа, будет обратной к заданной изначально.
Т.о., имеем 
Ответ после нахождения обратной матрицы:
Замечание. Если на каком-либо этапе в «левой» матрице образуется нулевая строка, значит, что заданная изначально не имеет обратной.
















