Что такое однородное уравнение третьей степени
Однородные уравнения
Однородные уравнения
Это означает, что однородный многочлен n-й степени f (х, у) можно представить в виде
где — коэффициенты многочлена, одновременно не обращающиеся в нуль.
т.е. условие (1) из определения выполняется (n = 2).
Итак, однородное алгебраическое уравнение — это уравнение, не меняющее своего вида при одновременном умножении всех его неизвестных на одно и то же число, отличное от нуля. Можно распространить понятие однородности на случай неалгебраических уравнений.
Пусть р(х) и q(x) — две произвольные функции, определённые на одном и том же множестве, .
В частности, если функции р(х) и q(x) являются целыми алгебраическими многочленами, то и уравнение (2) будет относиться к аналогичному классу. В качестве другого примера рассмотрим уравнение вида
Оно является однородным тригонометрическим уравнением 2-й степени относительно функций
Перейдём к процедуре решения уравнения (2).
Если хотя бы один из коэффициентов или
обращается в нуль, то левая часть уравнения легко раскладывается на множители. В результате уравнение оказывается равносильно на ОДЗ совокупности двух уравнений. Например, если
,
то получим совокупность
Если же и
, то для решения однородного уравнения (2) необходимо рассмотреть два возможных случая.
решив которое и сделав обратную подстановку, найдём часть решений однородного уравнения.
2) Если q(х) = 0. то, подставив в уравнение вместо q(x) нуль, получим, что тогда и р(х) должно обращаться в нуль. Таким образом, этот случай сводится к решению системы уравнений
Осталось объединить все найденные решения. Уравнение (2) решено. Обратимся к примерам.
Пример №185.
Решить уравнение
Решение:
Пример №186.
Решить в целых числах уравнение
Решение:
Заметим, что если у = 0, то x = 0, и, значит, пара (0;0) удовлетворяет уравнению. Пусть , тогда поделим обе части уравнения на
:
Ответ: где
.
Пример №187.
Для каждого действительного значения параметра а решить уравнение
Решение:
Заметим, что данное уравнение можно рассмотреть как однородное алгебраическое уравнение 4-й степени относительно x и а.
2) Если , то поделим на
, и положим
:
Первый сомножитель в нуль не обращается, а второй имеет два корня
Ответ: при а = 0 единственное решение x = 0 ;
при два решения
Пример №188.
Найти действительные корни уравнения
Решение:
Данное уравнение в исходном виде не является однородным, но может быть сведено преобразованиями к однородному. Действительно, достаточно привести его к виду
Получили однородное уравнение 2-й степени относительно x + 1 и у — 1.
1) Если , то, поделив на
и обозначив
, получим
нет решений.
Ответ:
Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:
Эти страницы возможно вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Однородные уравнения (ЕГЭ 2022)
В этой статье ты научишься решать однородные уравнения.
В частности, тригонометрические и показательные.
И это не так сложно, как выглядит!
Потому что алгоритм решения однородных уравнений один и тот же!
Для этого эти уравнения и выделили в одну группу – чтобы было легче решать. По одному алгоритму.
Читай статью, решай примеры и все поймешь!
Однородные уравнения — коротко о главном
Определение однородных уравнений
Однородные уравнения – это уравнения вида \( <
_<0>>< ^ >+< _<1>>< ^ >y+< _<2>>< ^ >< ^<2>>+…+< _ >x< ^ >+< _ >< ^ >=0\) с двумя неизвестными, в каждом из слагаемых которых одинаковая сумма степеней этих неизвестных.
Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени \( n\) и дальнейшей заменой переменных.
Алгоритм решения однородных уравнений
Однородные уравнение — подробнее
Что такое однородные уравнения? Давай посмотрим на определение.
Однородные уравнения – это уравнения вида \( <
_<0>>< ^ >+< _<1>>< ^ >y+< _<2>>< ^ >< ^<2>>+…+< _ >x< ^ >+< _ >< ^ >=0\) с двумя неизвестными, в каждом из слагаемых которых одинаковая сумма степеней этих неизвестных.
Совершенно пугающее определение, поэтому разберемся на примере.
Пример №1
Это уравнение однородное. Почему? Давай посмотрим на определение.
Стоп! Давай все-таки попытаемся разобраться в этой громоздкой формуле.
На первом месте должна идти первая переменная в степени \( n\) с некоторым коэффициентом. В нашем случае это \( 1\cdot <^<2>>,\ \ k=1,\ \ x=a,\ \ n=2\)
Дальше идет первая переменная в степени \( n-1\) и вторая переменная в первой степени.
Как мы выяснили, \( n=2\), значит здесь степень \( n-1=1\) при первой переменной \( \left( a \right)\) – сходится.
Первая переменная \( \left( a \right)\) в степени \( n-2=0\), и вторая переменная \( \left( b \right)\) в квадрате, с коэффициентом \( \left( 3 \right)\). Это последний член уравнения.
Как видишь, наше уравнение подходит под определение в виде формулы.
Давай рассмотрим вторую (словесную) часть определения.
…с двумя неизвестными, в каждом из слагаемых которого одинаковая сумма степеней этих неизвестных.
У нас две неизвестные \( (a\) и \( b)\). Здесь сходится.
Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.
\( 3<^<2>>\) — сумма степеней равна \( 2\).
Как видишь, все сходится! Это однородное уравнение.
Теперь давай потренируемся в определении однородных уравнений.
Определи какие из уравнений — однородные
Однородные уравнения — уравнения под номерами:
Рассмотрим отдельно \( 11\) уравнение.
Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим:
А это уравнение полностью попадает под определение однородных уравнений.
Как решать однородные уравнения
Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени \( n\) и дальнейшей заменой переменных.
Пример №2
Найдите \( \displaystyle \frac
Разделим уравнение на \( <
Нужно всегда помнить, что делить (и умножать) на переменную мы можем только тогда, когда мы уверены, что эта переменная не может быть равна \( 0\). Например, если нас просят найти \( \frac
\), то мы сразу понимаем, что \( y\ne 0\), поскольку на \( 0\) делить нельзя.
Когда это не так очевидно, необходимо отдельно проверять случай, когда эта переменная равна \( 0\).
У нас по условию y не может быть равен \( 0\). Поэтому мы можем смело делить на \( <
Произведя замену \( t=\frac
Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:
Произведя обратную замену, получаем ответ
Ответ: \( 2;5\)
Пример №3
Нужно найти: \( \displaystyle \ \frac
Решение:
Разделим уравнение на \( <
Произведем замену \( \displaystyle t=\frac
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №4
Здесь нужно не делить, а умножать.
Умножим все уравнение на \( <
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Решение однородных тригонометрических уравнений
Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше.
Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел «Тригонометрические уравнения»).
Рассмотрим такие уравнения на примерах.
Пример №5
Решите уравнение \( <<\sin >^<2>>x-3\sin x\cdot \cos x-4<<\cos >^<2>>x=0\).
Мы видим типичное однородное уравнение: \( \sin x\) и \( \cos x\) – это неизвестные, а сумма их степеней в каждом слагаемом равна \( 2\).
Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на \( <<\cos >^<2>>x\), рассмотрим случай, когда \( \cos x=0\)
В этом случае уравнение примет вид: \( <<\sin >^<2>>x=0\), значит \( \sin x=0\). Но синус и косинус не могут одновременно быть равны \( 0\), ведь по основному тригонометрическому тождеству \( <<\cos >^<2>>x+<<\sin >^<2>>x=1\). Поэтому \( \cos x\ne 0\), и на него можно смело делить:
Сделаем замену \( t=tgx\) и решим квадратное уравнение:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №6
Решите уравнение \( 5<<\sin >^<2>>x-2\sin x\cdot \cos x-3<<\cos >^<2>>x=0\).
Как и в примере \( 5\), нужно разделить уравнение на \( <<\cos >^<2>>x\).
Рассмотрим случай, когда \( \cos x=0\) :
Но синус и косинус не могут одновременно быть равны \( 0\), ведь по основному тригонометрическому тождеству \( <<\cos >^<2>>x+<<\sin >^<2>>x=1\).
Поэтому \( \cos x\ne 0\).
Сделаем замену \( t=tgx\) и решим квадратное уравнение:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Решение однородных показательных уравнений
Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения – посмотри соответствующий раздел («Показательные уравнения»)!
Рассмотрим несколько примеров.
Пример №7
Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней \( 2x\). Разделим уравнение на \( <<18>^<2x>>\):
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №8
Разделим уравнение на \( <<16>^<2x>>\):
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Пример №9
На примере этой задачи повторим, что такое однородные уравнения и как их решать.
Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на \( <^<2>>\), получим:
То есть, теперь нет отдельных \( a\) и \( b\), – теперь переменной в уравнении является искомая величина \( \frac\). И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно \( 2\), а сумма \( 3\) – это числа \( 2\) и \( 1\).
Ответ: \( 1;\text< >2.\)
называется однородным.
То есть это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна \( 2\).
Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:
И последующей заменой переменных: \( t=\frac
Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:
\( \displaystyle \Leftrightarrow\ a<
Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю!
Например, если нас просят найти \( \displaystyle \frac
В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:
Решите уравнение \( <<\sin >^<2>>x+3\sin x\cdot \cos x+2<<\cos >^<2>>x=0\).
Пример №10
Видим здесь типичное однородное уравнение: \( \sin x\) и \( \cos x\) – это неизвестные, а сумма их степеней в каждом слагаемом равна \( 2\).
Но, прежде чем разделить на \( <<\cos >^<2>>x\) и получить квадратное уравнение относительно \( \displaystyle \frac<\sin x><\cos x>\), мы должны рассмотреть случай, когда \( \cos x=0\).
Однородные показательные уравнения
Рассмотрим однородные показательные уравнения второй и третьей степени (1-й — здесь).
Однородное уравнение — это уравнение, все члены которого имеют одинаковую суммарную степень.
Однородные уравнения второй степени в общем виде можно записать так:
где k1, k2, k3, a и b — некоторые числа, причём a и b — положительны и отличны от единицы.
Чтобы прийти к такому виду, почти всегда уравнение требуется предварительно преобразовать. Чаще всего уравнение записывают в виде
Запишем признаки, которые позволят отличить однородное уравнение от уравнений другого вида.
Признаки однородного показательного уравнения второй степени
Однородные показательные уравнения второй степени решаются почленным делением обеих частей на наибольшую из степеней.
0,\]» title=»Rendered by QuickLaTeX.com»/>
деление на степень не приводит к потере корней (то есть получаем уравнение, равносильное предыдущему).
ОДЗ: x∈R.Перепишем уравнение в виде
Разделим обе расти уравнения почтенно на 3 в степени 2x:
После упрощения приходим к уравнению
Это уравнение сводится к квадратному при помощи замены
где t>o. Оба корня квадратного уравнения
удовлетворяют условию t>0. Обратная замена
Сначала избавляемся от числовых слагаемых в показателях степеней, используя свойства степеней
представим степень с основанием 15 в виде произведения степеней с основаниями 3 и 5:
Делим обе части уравнения на 5 в степени 2x:
0,\]» title=»Rendered by QuickLaTeX.com»/>
Оба корня положительны. Возвращаемся к исходной переменной:
По такому же принципу решаются однородные показательные уравнения 3-й степени.
o\]» title=»Rendered by QuickLaTeX.com»/>
приводит к уравнению третьей степени
Общий множитель (t-1) вынесем за скобки
Получили уравнение типа «произведение равно нулю». приравниваем к нулю каждый множитель
Корень 1-го уравнения — t=1, второе уравнение не имеет корней. Обратная замена