Что такое окислители в пожарной безопасности

Лекция «Общие понятия о горении и пожаровзрывоопасных свойствах веществ и материалов, пожарной опасности зданий»

СОДЕРЖАНИЕ

ВНИМАНИЕ! При изучение данной темы следует учитывать, что деятельность по обеспечению пожарной безопасности детально регламентируется действующим законодательством, которое в рамках проводимых реформ активно изменяется, поэтому рекомендуется положения нормативных правовых актов и нормативных документов в области пожарной безопасности уточнять в актуальных редакциях.

1. ГОРЕНИЕ ВЕЩЕСТВ И МАТЕРИАЛОВ. ПОЖАР И ЕГО РАЗВИТИЕ

1.1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ПОЖАР – неконтролируемое горение, приводящее к ущербу.

ГОРЮЧЕСТЬ – способность веществ и материалов к развитию горения.

Все вещества и материалы обладают определенной горючестью, т.е. способностью к развитию горения.

ГОРЕНИЕ – экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: пламенем, свечением, выделением дыма.

Из данного определения вытекает, что горение – это любая реакция окисления вещества, приводящая к выделению тепла. При этом реакция должна сопровождаться пламенем, свечением или дымом.

ПЛАМЕННОЕ ГОРЕНИЕ – горение веществ и материалов, сопровождающееся пламенем.

ТЛЕНИЕ – беспламенное горение материала.

ДЫМ – аэрозоль, образуемый жидкими и (или) твердыми продуктами неполного сгорания материалов.

ВОЗГОРАЕМОСТЬ – способность веществ и материалов к возгоранию.

ВОЗГОРАНИЕ – начало горения под воздействием источника зажигания.

То есть, начало выделения тепла в результате реакции окисления, сопровож­дающееся свечением, пламенем или дымом.

САМОВОЗГОРАНИЕ – возгорание в результате самоинициируемых экзо­термических процессов.

Самовозгорание сопровождается пламенем, свечением или дымом.

ВОСПЛАМЕНЯЕМОСТЬ – способность веществ и материалов к воспламенению.

ВОСПЛАМЕНЕНИЕ – начало пламенного горения под воздействием источника зажигания.

В отличие от возгорания, воспламенение сопровождается только пламенным горением.

САМОВОСПЛАМЕНЕНИЕ – самовозгорание, сопровождающееся пламенем.

Самовоспламенение сопровождается только пламенем, в отличие от само­возгорания.

ОПАСНЫЙ ФАКТОР ПОЖАРА – фактор пожара, воздействие которого на людей и (или) материальные ценности может привести к ущербу.

Опасными факторами, воздействующими на людей и материальные ости, являются:

— повышенная температура окружающей среды;

— токсичные продукты горения и термического разложения;

— пониженная концентрация кислорода.

Предельные значения опасных факторов пожара:

Температура среды – 70 °С

Тепловое излучение – 500 Вт/м 2

Содержание оксида углерода – 0,1% (об.)

Содержание диоксида углерода – 6% (об.)

Снижение видимости менее 20 м

Содержание кислорода менее 17% (об.)

К вторичным проявлениям опасных факторов пожара, воздействуют на людей и материальные ценности, относятся:

— осколки, части разрушающихся аппаратов, агрегатов, установок, конструкций;

— радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных: аппаратов и установок;

— электрический ток, возникший в результате выноса высокого напряжения токопроводящие части конструкций, аппаратов, агрегатов;

— опасные факторы взрыва по ГОСТ 12.1.010, происшедшего вследствие пожара.

1.2 ОБЩИЕ СВЕДЕНИЯ О ГОРЕНИИ

1.2.1 ДИФФУЗИОННОЕ И КИНЕТИЧЕСКОЕ ГОРЕНИЕ

Все горючие (сгораемые) вещества содержат углерод и водород, – основные компоненты газовоздушной смеси, участвующие в реакции горения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, кото­рые под воздействием высоких температур вступают в химическое воздействие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламе­ни по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка.

B зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:

— горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;

— горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей паровоздушной смеси.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющее в процессе горения тепло, создает давление. Основная реакция горения окисления происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окислителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, предает собой продукты неполного горения (СО, СН4, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пламени по ней. Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие большой диффузии воздуха в зону горения. Неустойчивость вначале возникает вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии.

Горение веществ и материалов возможно только при определенном качестве кислорода в воздухе. Содержание кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты – при 16% (об.)

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора должно осуществляться в плотно закрытой таре.

1.2.2 ИСТОЧНИКИ ЗАЖИГАНИЯ

Необходимым условием воспламенения горючей смеси являются источники зажигания. Источники зажигания подразделяются на открытый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электричества и молнии, энергию процессов саморазогревания веществ и материалов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются по:

Температура канала молнии – 30000°С при силе тока 200000 А и времени действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов с минимальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе высокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинилхлоридная изоляция электрического кабеля (провода) воспла­меняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуга при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятность попадания 6%) м; при расположении провода на высоте 3 м – от 4 (96%) до 8 м (1%); при расположении на высоте 1 м – от 3 (99%) до 6 м (6%).

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), «С (мин), некоторых малокалорийных источников тепла: тлеющая папироса – 320-410 (2-2,5); тлеющая сигарета – 420-460 (26-30); горящая спичка – 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм – 800°С, диаметром 5 мм – 600°С.

1.2.3 САМОВОЗГОРАНИЕ

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Температура самонагревания вещества или материала является показателем его пожарной опасности. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С: бумага – 100°С; войлок строительный – 80°С; дерматин – 40°С; древесина: сосновая – 80, дубовая – 100, еловая – 120°С; хлопок-сырец — 60°С.

Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Данные процессы обнаруживаются по длительному и устойчивому запаху тлеющего материала.

Микробиологическое самовозгорание связано с выделением тепловой энергии микроорганизмами в процессе жизнедеятельности в питательной для них среде (сено, торф, древесные опилки и т.п.).

На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.

2. ПОКАЗАТЕЛИ ПОЖАРОВЗРЫВООПАСНОСТИ

Изучение пожаровзрывоопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.

В соответствии с ГОСТ 12.1.044 по агрегатному состоянию вещества и материалы подразделяются на:

ГАЗЫ – вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа (1 атм) превышает 101,3 кПа (1 атм).

ЖИДКОСТИ – то же, но давлении меньше 101,3 кПа (1 атм). К жидкос­тям относят также твердые плавящиеся вещества, температура плавления или ка-плепадения которых меньше 50°С.

ТВЕРДЫЕ – индивидуальные вещества и их смеси с температурой плавления или каплепадения выше 50°С (например, вазилин — 54°С), а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.).

ПЫЛИ – диспергированные (измельченные) твердые вещества и материалы с размером частиц менее 850 мкм (0,85 мм).

Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл.1.

Значения данных показателей должны включаться в стандарты и технические условия на вещества, а также указываться в паспортах изделий.

Источник

Окислители

Федеральный закон от 22.07.2008 N 123-ФЗ (ред. от 10.07.2012) «Технический регламент о требованиях пожарной безопасности»

Смотреть что такое «Окислители» в других словарях:

ОКИСЛИТЕЛИ — пожароопасные вещества и материалы, обладающие способностью вызывать горение др. веществ (материалов), а также увеличивать его интенсивность. При горении в воздушной среде О. является кислород (21% по объему). Азот, основная составляющая (79% по… … Российская энциклопедия по охране труда

окислители — Вещества и материалы, обладающие способностью вступать в реакцию с горючими веществами, вызывая их горение, а также увеличивать его интенсивность. [Технический регламент о требованиях пожарной безопасности] Тематики пожарная безопасность … Справочник технического переводчика

Окислители — Так называются обыкновенно в химии вещества, более или менее богатые кислородом и притом сравнительно мало прочные и, в силу этой своей незначительной прочности, способные, при подходящих условиях, отдавать часть или весь свой кислород другим… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ОКИСЛИТЕЛИ — в ва, молекулы к рых принимают электроны или отдают кислород в окислит. восстановит. р циях. Относит. окислит. способность в в определяется путем сравнения изменения энергий Гиббса при р циях в в с одним и тем же восстановителем ( ), а в случае р … Химическая энциклопедия

ОКИСЛИТЕЛИ В ЛИТЕЙНЫХ КРАСКАХ — вещества, вводимые в краски, которые окисляют прожилки металла, проникающего в поры формы, переводят их в рыхлые оксиды и тем самым предотвращают механический пригар. Наиболее активным окислителем является V2O5 в сочетании с Na2SO4 … Металлургический словарь

Азотнокислые окислители — Азотнокислые окислители категория компонентов долгохранимого жидкого ракетного топлива, используемых в качестве окислителя, основным компонентом которых является азотная кислота. Применяются в боевых ракетах, космических ракетах носителях и … Википедия

фотохимические окислители — (образуются в результате фотохимических реакций монооксида углерода и оксида азота в атмосфере под воздействием солнечного излучения) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN photochemical… … Справочник технического переводчика

БИОЛОГИЧЕСНИЙ МЕТОД ОЧИСТНИ СТОЧНЫХ ВОД — БИОЛОГИЧЕСНИЙ МЕТОД ОЧИСТНИ СТОЧНЫХ ВОД, содержащих органические вещества (в широком значении), охватывает все те способы, при к рых используются микробиальные, био хим. процессы (распада и минерализации органического вещества), в к рых активное… … Большая медицинская энциклопедия

Окислитель — Окислитель вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель это акцептор электронов. В зависимости от поставленной задачи (окисление в жидкой или в газообразной… … Википедия

Терпены и их производные — класс соединений, важных в практическом отношении и весьма интересных в теоретическом; большею частью вырабатываются и выделяются растениями в виде так наз. эфирных масел (см.), но известно также много искусственно получаемых представителей этого … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Источник

Тема 2. Общие понятия о горении и пожаровзрывоопасных свойствах веществ и материалов, пожарной опасности зданий

Вопрос №1. Общие сведения о процессе горения. Основные понятия и определения.

Горение – это химическая реакция окисления, сопровождающаяся выделением большого количества теплоты и свечением. Окислителем чаще всего является кислород воздуха, иногда – другие химические элементы: хлор, фтор и др.

Для возникновения процесса горения необходимо наличие горючего вещества, окислителя и источника зажигания. Горючим называется вещество (материал, смесь, конструкция), способное самостоятельно гореть после удаления источника зажигания. Под источником зажигания понимают горячее или раскаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточной для возникновения горения других веществ (пламя, искры, раскаленные предметы, выделяемая при трении теплота и др.).

Необходимым и достаточным условием для горения при пожаре обычно представляют в виде «классического треугольника пожара» (рис. 1): горючее – окислитель – источник воспламенения. Устранив одно из слагаемых треугольника, снижается вероятность возникновения пожара.

Что такое окислители в пожарной безопасности. Смотреть фото Что такое окислители в пожарной безопасности. Смотреть картинку Что такое окислители в пожарной безопасности. Картинка про Что такое окислители в пожарной безопасности. Фото Что такое окислители в пожарной безопасности

Рис. 1 Классический треугольник пожара.

Горение бывает полное и неполное. Полное горение протекает при достаточном количестве кислорода (не менее 14 %), в результате чего образуются вещества, неспособные к длительному окислению (диоксид углерода, вода, азот и др.). При недостаточном содержании кислорода (менее 10 %) происходит неполное беспламенное горение (тление), сопровождающееся образованием токсичных и горючих продуктов (спиртов, кетонов, угарного газа и т. п.).

Пожар – неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Пожар следует отличать от сжигания, представляющего собой контролируемое горение внутри или вне специального очага.

Взрыв – это быстрое превращение вещества (взрывное горение), сопровождающееся образованием большого количества сжатых газов, под давлением которых могут происходить разрушения. Горючие газообразные продукты взрыва, соприкасаясь с воздухом, часто воспламеняются, что обычно приводит к пожару, усугубляющему негативные последствия взрыва.

Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны. При ударном сжатии температура газа может повыситься до температуры самовоспламенения. Происходит химическая реакция. Часть выделившейся теплоты затрачивается на энергетическое развитие и усиление ударной волны, поэтому она перемещается по горючей смеси не ослабевая. Такой комплекс, представляющий собой ударную волну и зону химической реакции, называют детонационной волной, а само явление – детонацией. Детонационное горение вызывает сильные разрушения и поэтому представляет большую опасность при образовании горючих газовых систем.

Следует различать термины «самовозгорание» и «самовоспламенение».

Самовозгорание – это явление резкого увеличения скорости экзотермических реакций, приводящее к горению вещества, материала или смеси в отсутствие источника зажигания. Оно может быть тепловое, химическое и микробиологическое.

Самовоспламенение представляет собой самовозгорание, сопровождающееся появлением пламени. Температура самовоспламенения большинства горючих жидкостей находится в пределах 250. 700 °С (исключения: сероуглерод – 112…150 °С, серный эфир – 175. 205 °С), а твердых горючих веществ – 150. 700 °С, хотя, например, целлулоид способен самовоспламеняться уже при температуре 141 °С.

Вопрос №2. Показатели, характеризующие взрывопожароопасные свойства веществ и материалов.

Изучение взрывопожароопасных свойств веществ и материалов, обра­щающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.

В соответствии с ГОСТ 12.1.044-89 по агрегатному состоянию вещества и материалы подразделяются на:

Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл. 1.

Показатели и их применяемость для характеристики

взрывопожароопасных свойств веществ и материалов

Концентрационные пределы воспла­менения

Условия теплового самовозгорания

Способность взрываться и гореть при взаимодействии с водой, кисло­родом воздуха и другими вещества­ми

Показатель токсичности продуктов горения полимерных материалов

(Знак «+» обозначает применяемость, знак «—» неприменяемость показателя).

Температура самонагревания – самая низкая температура вещества, при которой самопроизвольный процесс его нагревания не при­водит к тлению или пламенному горению.

Безопасной температурой длительного нагрева вещества считают тем­пературу, не превышающую 90% температуры самонагревания.

Коэффициент дымообразования – показатель, харак­теризующий оптическую плотность дыма, образующегося при пламен­ном горении или термоокислительной деструкции (тлении) определен­ного количества твердого вещества (материала) в условиях специальных испытаний.

Различают 3 группы материалов по дымообразующей способности (табл. 2).

Группы материалов по дымообразующей способности

Группы материалов по дымообразующей способности

Коэффициент дымообразования, м 2 /кг (м 3 /кг)

до 50 вкл. (до 10 вкл.)

свыше 50 до 500 вкл. (св. 10 до 100 вкл.)

свыше 500 (свыше 100)

Примеры дымообразующей способности строительных материалов при тлении (горении), м 3 /кг:

Древесное волокно (береза, осина) — 62.

Декоративный бумажно-слоистый пластик — 75.

Фанера марки ФСФ — 140.

ДВП, облицованная пластиком — 170.

Классификация материалов приведена в таблице 3:

Показатели токсичности веществ и материалов

при времени экспозиции, мин

* Для материалов чрезвычайно опасных по токсичности масса не превышает 25 грамм, чтобы создать смертельную концентрацию в объеме 1 м 3 за время 5 мин. Соответственно, за время 15 мин — до 17; 30 мин — до 13; 60 мин — до 10 грамм.

Нижний (верхний) концентрационные пределы распространения пламени (воспламенения) — минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при ко­тором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Температура тления — температура вещества, при которой про­исходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления.

По горючести вещества и материалы подразделяются на три груп­пы: негорючие, трудногорючие и горючие.

Негорючие (несгораемые) — вещества и материалы, не способ­ные к горению в воздухе. Негорючие вещества могут быть пожаровзрыво-опасными (например, окислители или вещества, выделяющие продукты при взаимодействии с водой, кислородом воздуха или друг с другом).

Трудногорючие (трудносгораемые) — вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления.

Горючие (сгораемые) — вещества и материалы, способные само­возгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Горючие жидкости (ГЖ) с Твсп Вопрос №3. Категорирование и классификация зданий, сооружений и помещений по пожаровзрывоопасности.

В соответствии с [2, ст. 26] классификация зданий, сооружений и помещений по пожарной и взрывопожарной опасности применяется для установления требований пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечение противопожарной защиты людей и имущества в случае возникновения пожара в зданиях, сооружениях и помещениях.

По пожарной и взрывопожарной опасности помещения производственного и складского назначения независимо от их функционального назначения подразделяются на следующие категории:

1) повышенная взрывопожароопасность (А);

2) взрывопожароопасность (Б);

4) умеренная пожароопасность (Г);

5) пониженная пожароопасность (Д).

Здания, сооружения и помещения иного назначения разделению на категории не подлежат.

Категории помещений по пожарной и взрывопожарной опасности определяются исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов (табл. 4).

Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещения к категориям от наиболее опасной (А) к наименее опасной (Д). Категории «А», «Б», «В1-В4» определяются расчетным путем согласно СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности».

Категории помещений по взрывопожарной и пожарной опасности

Характеристика веществ и материалов, находящихся (обращающихся) в помещении

Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28°С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа, и (или) вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом, в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа.

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28°С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они находятся (обращаются), не относятся к категории А или Б.

Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, и (или) горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.

Негорючие вещества и материалы в холодном состоянии.

Категории зданий по взрывопожарной и пожарной опасности определяются, исходя из доли и суммированной площади помещений той или иной категории опасности в этом здании.

Вопрос №4. Классификация строительных, текстильных и кожевенных материалов по пожарной опасности.

Классификация веществ и материалов по пожаровзрывоопасности и пожарной опасности используется для установления требований пожарной безопасности при получении веществ и материалов, применении, хранении, транспортировании, переработке и утилизации.

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:

3) способность распространения пламени по поверхности;

4) дымообразующая способность;

5) токсичность продуктов горения.

По горючести строительные материалы подразделяются на горючие (Г) и негорючие (НГ).

Горючие строительные материалы подразделяются на следующие группы:

1) слабогорючие (Г1), имеющие температуру дымовых газов не более 135 градусов Цельсия, степень повреждения по длине испытываемого образца не более 65 процентов, степень повреждения по массе испытываемого образца не более 20 процентов, продолжительность самостоятельного горения 0 секунд;

2) умеренногорючие (Г2), имеющие температуру дымовых газов не более 235 градусов Цельсия, степень повреждения по длине испытываемого образца не более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 30 секунд;

3) нормальногорючие (Г3), имеющие температуру дымовых газов не более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 300 секунд;

4) сильногорючие (Г4), имеющие температуру дымовых газов более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца более 50 процентов, продолжительность самостоятельного горения более 300 секунд.

По воспламеняемости горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) трудновоспламеняемые (В1), имеющие величину критической поверхностной плотности теплового потока более 35 киловатт на квадратный метр;

2) умеренновоспламеняемые (В2), имеющие величину критической поверхностной плотности теплового потока не менее 20, но не более 35 киловатт на квадратный метр;

3) легковоспламеняемые (В3), имеющие величину критической поверхностной плотности теплового потока менее 20 киловатт на квадратный метр.

По скорости распространения пламени по поверхности горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) нераспространяющие (РП1), имеющие величину критической поверхностной плотности теплового потока более 11 киловатт на квадратный метр;

2) слабораспространяющие (РП2), имеющие величину критической поверхностной плотности теплового потока не менее 8, но не более 11 киловатт на квадратный метр;

3) умереннораспространяющие (РП3), имеющие величину критической поверхностной плотности теплового потока не менее 5, но не более 8 киловатт на квадратный метр;

4) сильнораспространяющие (РП4), имеющие величину критической поверхностной плотности теплового потока менее 5 киловатт на квадратный метр.

По дымообразующей способности горючие строительные материалы в зависимости от значения коэффициента дымообразования подразделяются на следующие группы:

1) с малой дымообразующей способностью (Д1), имеющие коэффициент дымообразования менее 50 квадратных метров на килограмм;

2) с умеренной дымообразующей способностью (Д2), имеющие коэффициент дымообразования не менее 50, но не более 500 квадратных метров на килограмм;

3) с высокой дымообразующей способностью (Д3), имеющие коэффициент дымообразования более 500 квадратных метров на килограмм.

По токсичности продуктов горения горючие строительные материалы подразделяются на следующие группы (см. табл. 3):

2) умеренноопасные (Т2);

3) высокоопасные (Т3);

4) чрезвычайно опасные (Т4).

Вопрос №5. Огнестойкость строительных конструкций и способы их огнезащиты.

Для строительных конструкций, а также зданий или сооружений важным фактором является огнестойкость. Огнестойкость – это способность строительных конструкций сохранять свои рабочие функции под действием высоких температур пожара. Огнестойкость зданий и сооружений делят на пять степеней (I, II, III, IV и V), которым должны соответствовать пределы огнестойкости строительных конструкций и пределы распространения огня по ним (табл. 5).

Классификация зданий и пожарных отсеков по конструктивной пожарной опасности

Предел огнестойкости строительных конструкций, не менее

Несущие элементы здания

Наруж-ные не-несущие стены

(в т.ч. чердачные и над подвалами)

Элементы бесчердачных покрытий

Настилы (в том числе с утеплите-лем)

Фермы, балки, прогоны

Марши и площадки лестниц

Огнестойкость строительных конструкций характеризуется пределом огнестойкости «П». Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность. Потеря несущей способности означает обрушение строительной конструкции при пожаре. Потеря ограждающей способности означает прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции трещин, через которые могут проникать в соседние помещения продукты горения.

Нормируемые признаки предельных состояний строительных конструкций [6]:

потеря несущей способности (R);

потеря целостности (Е);

потеря теплоизолирующей способности (I).

Различают фактический и требуемый предел огнестойкости. Требуемая огнестойкость – тот минимальный предел огнестойкости Птр, которым должна обладать соответствующая строительная конструкция, чтобы удовлетворить требованиям пожарной безопасности. Значения требуемых пределов огнестойкости определяют опытным путем. Фактический предел огнестойкости Пф запроектированных или уже функционирующих конструкций определяют расчетным путем.

По пожарной опасности строительные конструкции подразделяются на четыре класса [6]:

Поведение железобетонных конструкций при действии высоких температур различно для разных типов конструкций. Предел огнестойкости центрально сжатых железобетонных колонн с гибкой арматурой зависит от сечения колонн, теплотехнических показателей материала колонн, коэффициента изменения прочности бетона при действии высоких температур. Поэтому при необходимости увеличения пределов огнестойкости колонн рекомендуют увеличение сечения, выбор бетона с меньшим коэффициентом температуропроводности, снижение нагрузки на колонну, выбор бетона с более высокой критической температурой, что достигается подбором вяжущих веществ и соответствующих заполнителей для бетонов или применением жаростойких бетонов.

Повышение пределов огнестойкости свободно опертых плит и балок может быть достигнуто путем увеличения толщины защитного слоя бетона, снижения его температуропроводности, нанесения штукатурок или облицовок из малотеплопроводных материалов, уменьшения нагрузки и выбора арматуры с более высокой критической температурой.

Опыты и наблюдения на пожарах показали, что огнестойкость стальных несущих конструкций незначительна, они в основном под действием высоких температур теряют устойчивость. Предел огнестойкости металлических конструкций ограничивается несколькими минутами и зависит от их сечения и температуры пожара. Особенно неблагоприятные условия работы для металлических конструкций при пожаре создаются в тех случаях, когда они находятся в сочетании с горючими материалами, например деревянные прогоны и обрешетки, горючая кровля, заполнение перекрытий горючими материалами. Такое сочетание вызывает быстрое распространение пожара на значительной площади.

Увеличение огнестойкости металлических конструкций осуществляют с помощью технических и проектных решений. К техническим решениям, замедляющим нагрев конструкций до критических температур, относят применение штукатурки, облицовки вспучивающихся красок (рис. 2). Использование вспучивающихся красок очень выгодно. Окраска слоем 2,5. 3 мм по огнезащитному эффекту равноценна штукатурке или облицовочным плитам толщиной 2,5. 3 см.

Что такое окислители в пожарной безопасности. Смотреть фото Что такое окислители в пожарной безопасности. Смотреть картинку Что такое окислители в пожарной безопасности. Картинка про Что такое окислители в пожарной безопасности. Фото Что такое окислители в пожарной безопасности

Рис. 2. Огнезащита стальных конструкций с применением вспучивающихся красок.

В качестве строительного материала широко применяется древесина. Чтобы предотвратить ее воспламенение, необходимы защитные меры. Древесина, предварительно обработанная защитными средствами, подвергаясь действию огня, будет разлагаться, но не воспламеняется. Вследствие этого горение открытым пламенем не будет возникать и распространяться от действия внешнего источника огня. Кроме общеизвестной и широко применяемой для строительных деревянных конструкций облицовки (штукатурки) обработка древесины может осуществляться с помощью обмазки, окраски, пропитки и минерализации.

Обработка древесины окраской состоит в том, что на поверхность древесины наносят плотный слой обмазки или краски, приготовленной из таких веществ, которые сами по себе не горят, достаточно долго не разрушаются в огне и малотеплопроводны.

Обработка древесины пропитыванием огнезащитными веществами — антипиренами более эффективно защищает от загорания, чем окраска. Но этот способ огнезащитной обработки более дорог и трудоемок.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *