Что такое омметр в физике
Омметр
Приборы для измерения сопротивления
Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.
Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.
Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».
Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.
Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.
На принципиальных схемах омметр обозначается следующим условным графическим обозначением.
Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.
Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.
Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.
Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:
Короткое замыкание, где его быть не должно.
Обрыв там, где должна быть замкнутая цепь.
Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.
О стрелочных измерительных приборах…
Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.
Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.
Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.
Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.
С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.
Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.
К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.
Преимущество стрелочных приборов.
Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка
Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.
В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.
Взглянем на внутренности цифрового мультиметра.
Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.
Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.
Практическая работа с мультиметром DT-830B.
Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.
Пределы измерения омметра выглядят вот так.
На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:
Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.
Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.
А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.
Омметр
Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.
Содержание
Классификация и принцип действия
Классификация
Магнитоэлектрические омметры
Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U — напряжение источника питания; r0 — сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно.
Логометрические мегаомметры
Основой логометрических мегаометров является логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения измерений, в таких приборах обычно используется механический индуктор — электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.
Аналоговые электронные омметры
Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.
Цифровые электронные омметры
Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.
Измерения малых сопротивлений. Четырехпроводное подключение
При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют т. н. метод четырёхпроводного подключения. Сущность метода состоит в том, что используются две пары проводов: по одной паре на измеряемый объект подаётся заданный ток, с помощью другой пары производится измерение напряжения на объекте, пропорционального силе тока и обратно пропорционального сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь.
Наименования и обозначения
Видовые наименования
Обозначения
Омметры обозначаются либо в зависимости от системы (основного принципа действия), либо по ГОСТ 15094
Основные нормируемые характеристики
Другие средства измерения сопротивлений
Измерение сопротивления по постоянному току
Измерение сопротивления по переменному току
Литература и документация
Литература
Нормативно-техническая документация
Ссылки
См. также
Полезное
Смотреть что такое «Омметр» в других словарях:
ОММЕТР — ОММЕТР, прибор для непосредственного измерения электрических активных сопротивлений в омах (от мкОм до МОм). Для измерения больших сопротивлений обычно применяют мегомметры и тераомметры … Современная энциклопедия
ОММЕТР — ОММЕТР, омметра, муж. (от слова ом и греч. metron мера) (физ.). Электрический прибор для непосредственного измерения сопротивления. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ОММЕТР — прибор для измерения электрического (омического) сопротивления. В зависимости от диапазона измерений различают микроомметры, мегомметры, тераомметры. В простейших О. с магнитоэлектрическим измерительным механизмом реализуется метод вольтметра… … Физическая энциклопедия
ОММЕТР — (Ohmmeter) прибор для измерения электрического сопротивления. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
ОММЕТР — прибор для измерения электр. сопротивления (в омах). О. бывают типа вольтметра, мостика Уитстона и с двумя катушками. О. первого типа представляет собой вольтметр с большим внутренним сопротивлением и шкалой, проградуированной в омах. Показания О … Технический железнодорожный словарь
омметр — сущ., кол во синонимов: 10 • вольтомметр (3) • мегаомметр (3) • мегометр (3) • … Словарь синонимов
омметр — (прибор) … Орфографический словарь-справочник
омметр — измеритель сопротивления [IEV number 313 01 09] EN ohmmeter resistance meter instrument intended to measure electrical resistance [IEV number 313 01 09] FR ohmmètre appareil destiné à mesurer une résistance… … Справочник технического переводчика
Омметр — ОММЕТР, прибор для непосредственного измерения электрических активных сопротивлений в омах (от мкОм до МОм). Для измерения больших сопротивлений обычно применяют мегомметры и тераомметры. … Иллюстрированный энциклопедический словарь
Что такое омметр в физике
Омметр представляет собой электрический прибор, используемый для измерения сопротивления в цепи или компоненте. Противодействие потоку электрического тока является мерой сопротивления в электрической цепи. Единицей измерения электрического сопротивления является ом (Ω).
Омметр работает на основе того, что когда омметр подает ток на цепь или компонент, он измеряет результирующее напряжение и вычисляет значение сопротивления, используя формулу закона Ома V = IR. Для измерения сопротивления мы также можем использовать аналоговый и цифровой мультиметр.
Мы не можем определить сопротивление омметром в исправной или тестовой цепи. Чтобы проверить сопротивление, нам нужно отключить питание и измерить сопротивление.
Конструкция омметра
Конструкция схемы омметра представляет собой смесь миллиамперметра (микроамперметра) с последовательным набором сопротивлений и постоянного батарейного источника питания. Аналоговый мультиметр состоит из следующих частей:
Как работает омметр?
Принцип работы омметра заключается в том, что при протекании тока через цепь или компонент, стрелка в измерителе отклоняется. Когда стрелка перемещается влево от измерителя, это означает высокое сопротивление и реакцию на низкий ток.
Когда стрелка отклоняется в правую сторону измерителя, это означает низкое сопротивление и реакцию на высокий ток. Вы можете посмотреть на изображении ниже:
Резистивная измерительная шкала нелинейна в омметре и аналоговом мультиметре. Указатель измерителя сопротивления показывает ноль на полной шкале (правая сторона) и максимум на остальной. Нам нужно сделать положение указателя равным нулю, прежде чем использовать его.
После того, как он упадет до нуля, мы можем протестировать компонент. Измеритель сопротивления обычно находится в диапазоне от 1 Ом до 1 МОм. Когда два щупа подключены с каждой стороны резистора, указатель начинает отклоняться.
Чтобы считывать показания омметра, поверните ручку переключателя на расчетный диапазон в омах или установите его на максимальный диапазон, чтобы увидеть, расчетное показание. Если значение слишком велико, указатель останется на нуле. Мы можем попробовать настроить шкалу диапазона сопротивления на меньший диапазон множителя или продолжать регулировать ручку, пока не получим точные результаты.
После завершения регулировки ручки нам нужно произвести расчеты с результатами, которые мы читаем на шкале. Если диапазон множителя отмечен как «x10», нам нужно умножить показание на 10 Ом. Если в маркировке диапазона множителя написано «x1K», нам нужно умножить показание на 1000 Ом.
Типы омметров
Существуют разные типы омметров в зависимости от конструкции. Это Micro, Milli, Mega, цифровой мультиметр, последовательный, шунтирующий и многодиапазонный омметр.
Микроомметр
Этот омметр измеряет относительно низкое сопротивление в диапазоне от 1 мкОм до 2500 Ом. Счетчик состоит из набора сопротивлений с разными диапазонами тока.
Он использует 4-проводной метод Кельвина для измерения сопротивления индуктивных нагрузок. Он также использует фильтры для устранения пульсаций переменного тока. Некоторые из них: 10A-5 мОм, 10A-25 мОм, 10A-250 мОм, 1A-2500 мОм, 100 мА-25 Ом, 10 мА-250 Ом, 1 мА-2500 Ом.
Миллиомметр
Цифровой миллиомметр с высокой точностью рассчитывает сопротивление в диапазоне от 100 мкОм до 2000 Ом. Для измерения сопротивления используется 4-проводная технология измерения сопротивления.
Применяется для измерения сопротивления обмоток электродвигателей, генераторов, испытаний на сцепление для железных дорог, судов и т. д.
Мегаомметр
Прибор измеряет сопротивление в цепи в мегаомах и гигагемах. Подходит для измерения сопротивления изоляции. Диапазон измерения составляет от 0,5 Ом до 2 000 000 МОм.
Цифровой омметр
Он также известен как цифровой мультиметр для измерения сопротивления. Он также измеряет ток и напряжение в электронной схеме. Этот счетчик легко читается по сравнению с аналоговым. Вы можете измерить сопротивление в омах, килоомах и мегаомах на цифровом дисплее.
Тераомметр
Этот прибор измеряет высокие значения сопротивления тестируемого устройства. Для этого он использует два резистора (последовательный и нулевой), чтобы определить неизвестное сопротивление на резисторе.
Резистор регулировки нуля включен параллельно с движением счетчика. Устройство имеет внутренний источник напряжения для выработки тока и показывает сопротивление через отклонение измерителя.
Шунтирующий омметр
Шунтирующий измеритель измеряет низкие значения сопротивления в цепи. Показание бесконечности настраивается вместо нулевого резистора. Этот тип омметров редко используется, так как их диапазон измерения невелик (от 5 до 400 Ом).
В отличие от Тераомметра, движение счетчика идет параллельно с обнаруживаемым сопротивлением.
Многодиапазонный омметр
Этот измеритель оснащен переключателем для измерения широкого диапазона значений сопротивления. Начальное показание устанавливается на ноль с помощью регулятора. Чтобы узнать неизвестное сопротивление, подключите его параллельно к прибору. Регулировка выполняется таким образом, чтобы измеритель показывал значение полной шкалы.
Сравнение
Вот некоторые примеры для использования и применения различных типов омметров:
Тип омметра | Используется для |
Микроомметр | |
Миллиомметр | Измерения напряжения и тока, проверки диодов, дорожек печатных плат и т. д. |
Мегаомметр | Измерения изоляции кабелей, испытания конденсаторов, заземления и испытания на короткое замыкание |
Цифровой Омметр | |
Тераомметр | Измерения высокого сопротивления, катушек машинного поля |
Омметр шунтового типа | Выявления низких значений сопротивления, мостовых схем, нагревательныхэлементов |
Итог
Как измерить сопротивление с помощью омметра и какой тип прибора выбрать? Это зависит от схемы измерения и области применения. Омметр измеряет сопротивление между двумя выводами.
ОММЕТР
Прибор для измерения электрического (омического) сопротивления. В зависимости от диапазона измерений различают микроомметры, мегомметры, тераомметры. В простейших О. с магнитоэлектрическим измерительным механизмом реализуется метод вольтметра-амперметра: при пост. напряжении источника питания сила тока, протекающего через подвижную рамку механизма, и отклонение указателя определяются измеряемым сопротивлением. Осн. недостаток таких О.— зависимость их показаний от напряжения источника питания, поэтому перед применением рассматриваемого О. нач. положение указателя обязательно корректируется. О. с логометром нечувствительны к отклонению напряжения питания от номин. значения (в пределах примерно ±20%). При измерении больших сопротивлений (100 Ом — 10 МОм) измеряемое сопротивление включается последовательно с рамкой логометра (рис. 1, о), при измерении меньших сопротивлений — параллельно (рис. 1, б).
Рис. 1. Схема логометрич. омметра: а — для измерения больших сопротивлений rх; б — для измерения малых сопротивлений r’х; Л — логометр; rх и r0, r’0 — измеряемое и образцовые сопротивления; Uпит — питающее напряжение.
Источники питания О. с электроизмерит. механизмом — сухие гальванич. элементы, встраиваемые в О., либо магнитоэлектрич. генераторы с ручным приводом (в мегомметрах). О. с электроизмерит. механизмом позволяют измерять сопротивления, не превышающие неск. тысяч МОм. Для измерений больших сопротивлений используются электронные О. (тераомметры).
Рис. 2. Схема электронного омметра: а — с прямой шкалой (ноль на шкале слева); б — с обратной шкалой (ноль на шкале справа); rx и r0 — измеряемое и образцовое сопротивления; Uпит — питающее напряжение; V — электронный вольтметр.
Они, как правило, состоят из делителя напряжения, образованного образцовым и измеряемым сопротивлениями, и электронного вольтметра, измеряющего напряжение на одном из плеч делителя (рис. 2). Широкое распространение получили цифровые О. ( см. ЦИФРОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР), входные цепи к-рых обычно представляют собой мост измерительный. Шкалы О. неравномерны. Погрешность измерений выражается в % от длины шкалы.
Выпускаемые О. с электроизмерительным механизмом имеют верхний предел измерений от 100 мкОм до 1000 МОм, осн. погрешность 1—5%; у цифровых О. диапазон измерений 10-3—1010 Ом, осн. погрешность 0,05— 1,0%; у электронных О. верхний предел измерений до 1017 Ом, осн. погрешность 1—2,5% (для сверхбольших сопротивлений — до 10—15%).