Что такое оперативная блокировка
Оперативные блокировки
Оперативная блокировка должна рассматриваться как дополнительное средство, предотвращающее выполнение ошибочных операций с коммутационными аппаратами и заземляющими ножами в процессе всех переключений в электроустановках.
Блокировка разъединителей с выключателями должна предотвращать ошибочные операции включения и отключения разъединителей под нагрузкой при включенном положении выключателя и при прохождении больших уравнительных токов.
Блокировка стационарных защитных заземлений должна предотвращать ошибочные операции:
— включения заземляющих ножей на шины и участки присоединений, находящиеся под напряжением;
— включения разъединителей на участки шин и присоединений, заземленные с помощью заземляющих ножей;
— подачи напряжения выключателем на заземленные с помощью заземляющих ножей участки шин.
— возбуждения генератора при включенных заземляющих ножах.
Для шинных разъединителей и заземляющих ножей сборных шин должна выполняться полная оперативная блокировка, предотвращающая включение заземляющих ножей на сборные шины при включенных (хотя бы одном) шинных разъединителях и включение любого из шинных разъединителей при включенных заземляющих ножах сборных шин.
В электроустановках, где блокировка выполнена не в полном объеме (заземляющие ножи сборных шин имеют блокировку только с разъединителями трансформатора напряжения и не имеют блокировочных устройств с шинными разъединителями всех присоединений данной системы шин), приводы заземляющих ножей запираются висячими замками, ключи от которых находятся у оперативного персонала, обслуживающего электроустановку. В этом случае при выводе системы шин в ремонт включение заземляющих ножей на шины, а также операции с шинными разъединителями выведенных в ремонт присоединений выполняются только после тщательной проверки схемы электрических соединений в натуре.
Во время переключений в электроустановках все устройства оперативной блокировки (данного объекта) должны быть исправны и находиться в работе.
Блокировочные замки, находящиеся в эксплуатации, должны быть опломбированы, а контрольные отверстия на электромагнитных ключах залиты сургучом и проклеймены.
Административно-технический персонал электроцеха электростанций, электрических сетей должен обеспечить исправность блокировочных устройств.
В том случае, когда блокировка не разрешает выполнение какой-либо операции, переключения следует прекратить и проверить:
-правильно ли выбрано присоединение и коммутационный аппарат;
-положение других коммутационных аппаратов, операции с которыми должны были предшествовать выполняемой операции;
-включенное положение автоматов питания, целость предохранителей цепей блокировки, а также исправность электромагнитного ключа;
-исправность механической части привода коммутационного аппарата (проверяется визуально).
Если такой проверкой не будет установлена причина, в результате которой блокировка запрещает выполнение операции, то об этом необходимо сообщить оперативному руководителю, отдавшему распоряжение о переключении, и руководству объекта, предприятия, имеющему право давать разрешение на деблокировку.
Запрещается местному оперативному персоналу в процессе переключений самостоятельно принудительно деблокировать блокировочные устройства, а также нарушать взаимодействие элементов блокировочных устройств.
Деблокирование (со снятием пломб) блокировочных устройств является крайней мерой и допускается только с разрешения и под непосредственным руководством начальника электроцеха или его заместителя на электростанциях, начальника подстанции (группы подстанций), службы подстанций; начальника или главного инженера РЭС, главного инженера, заместителя главного инженера электрических сетей.
Вышеуказанным лицам запрещается давать разрешение на деблокировку по телефону.
Все уполномоченные на это лица оформляются письменным указанием по электростанции или электросетям.
Если возникает необходимость деблокирования то необходимо составить рабочий бланк переключений с внесением в него операций по деблокированию.
При ликвидации технологических нарушений разрешение на деблокировку, как исключение, может дать вышестоящий оперативный руководитель, в ведении которого находится данное оборудование.
Факт деблокирования и разрешение на продолжение оперативных переключений записываются в оперативный журнал объекта и в оперативный журнал оперативного руководителя, разрешившего деблокировку. О неисправности блокирующих устройств делается запись в журнал дефектов оборудования.
У линейных разъединителей приводы заземляющих ножей в сторону линий имеют только механическую блокировку с приводом главных ножей, что не исключает возможности подачи на включенные заземляющие ножи напряжения с противоположной стороны линии.
Для предотвращения ошибочных действий оперативного персонала оперативный руководитель, координирующий выполнение операций с обеих сторон линии, сообщает оперативному персоналу о положении заземляющих ножей линейных разъединителей на противоположной стороне линии каждый раз перед подачей напряжения на линию и перед ее заземлением при выводе в ремонт.
Что такое оперативная блокировка
ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ОПЕРАТИВНЫХ БЛОКИРОВОК БЕЗОПАСНОСТИ В РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВАХ ВЫСОКОГО НАПРЯЖЕНИЯ
СОГЛАСОВАНА с начальником Отдела по технике безопасности и промышленной санитарии Р.А.Гаджиевым 03.10.79
УТВЕРЖДЕНА заместителем начальника Главтехуправления К.М.Антиповым 05.10.79
В настоящей Инструкции приведено описание оперативных блокировок в распределительных устройствах высокого напряжения, даны указания по их монтажу и эксплуатации, испытаниям и профилактическим осмотрам.
Инструкция предназначена для руководящего, оперативного и эксплуатационного персонала электростанций и подстанций.
ВВЕДЕНИЕ
Важным средством предупреждения неправильных операций, производимых оперативным персоналом, является оснащение всех разъединителей и заземляющих ножей устройствами блокировки.
Оперативная блокировка должна рассматриваться как дополнительное средство, препятствующее производству ошибочных операций. Персонал обязан знать инструкции по производству переключений в электрических распределительных устройствах и производить оперативные переключения сознательно, четко представляя очередность операций и конечную цель переключений.
1. ОЩИЕ ТРЕБОВАНИЯ К УСТРОЙСТВАМ БЛОКИРОВКИ И ПРИНЦИПЫ ИХ ВЫПОЛНЕНИЯ
1.1. Оперативная блокировка разъединителей с выключателями должна предотвращать:
— включение и отключение разъединителями активной и реактивной мощности, за исключением предусмотренных § 48.16 «Правил технической эксплуатации электрических станций и сетей» («Энергия», 1977) случаев включения и отключения намагничивающего тока силовых трансформаторов и зарядного тока линий;
— включение и отключение разъединителями больших уравнительных токов или включение на несинхронное напряжение.
Блокировка защитных заземлений должна предотвращать:
— включение заземляющих ножей на шины и участки присоединений, находящиеся под напряжением;
— включение разъединителей на участки шин и присоединений, заземленные включенными заземляющими ножами;
— подачу напряжения выключателем на заземленный участок шин.
а) для разъединителей и заземляющих ножей должна выполняться блокировка, исключающая:
— оперирование разъединителем под нагрузкой (за исключением тех случаев, когда разъединитель шунтирован другой электрической цепью, не содержащей сопротивления, например шиносоединительным выключателем);
— включение заземляющего ножа на участке цепи, не отделенном разъединителями от участков, находящихся под напряжением;
— возможность подачи напряжения разъединителем на заземленный участок цепи; в соответствии с требованием § II-2-22 «Правил техники безопасности при эксплуатации электроустановок электрических станций и подстанций» («Энергия», 1972) заземления должны быть отделены видимым разрывом от токоведущих частей, находящихся под напряжением;
— возможность подачи напряжения выключателем на заземленный участок цепи. Это достигается тем, что от других участков цепей выключатель отделяется с обеих сторон разъединителями, сблокированными с заземляющими ножами таким образом, что включение заземляющего ножа с одной стороны выключателя оказывается возможным только при отключенном разъединителе с другой стороны выключателя и, наоборот, включение разъединителя с одной стороны выключателя возможно при отключенном заземляющем ноже с другой стороны выключателя. Введение каких-либо блокировочных элементов в цепи включения выключателей для предотвращения их включения на заземленный участок цепи при этом не допускается;
б) для разъединителей с пофазным исполнением оперативная блокировка выполняется таким образом, что оперирование разъединителем любой фазы невозможно при включенных заземляющих ножах на любой другой фазе. Это условие необходимо, так как фазы связаны через обмотки трансформатора;
г) для шинных разъединителей и заземляющих ножей сборных шин выполняется полная оперативная блокировка, запрещающая включение заземляющего ножа сборных шин при включенном (хотя бы одном) шинном разъединителе и включение любого шинного разъединителя при включенном заземляющем ноже сборных шин;
д) в комплектных РУ СН 6 кВ выполняется оперативная блокировка, запрещающая включение заземляющего ножа сборных шин РУ СН 6 кВ при рабочем положении тележек выключателей в цепях вводов рабочего и резервного питания, тележек выключателей трансформаторов СН 6/0,38 кВ и линий 6-10 кВ с двусторонним питанием, а также вкатывание этих тележек в рабочие положения при включенном заземляющем ноже шин РУ СН 6 кВ.
1.2. К устройствам блокировки предъявляются следующие требования:
— блокировка должна быть полной, т.е. предусматривать блокирование всех неправильных операций, которые могут быть произведены разъединителями;
— устройства оперативной блокировки и блокировки заземляющих ножей должны осуществляться по общей схеме;
— блокировка должна быть надежна в эксплуатации.
Недопустимо, чтобы при различных неисправностях или исчезновении напряжения оперативного тока блокировка позволяла производить операции с разъединителями;
— приводы разъединителей должны запираться блок-замками только в крайних положениях «Включено» и «Отключено». В промежуточных положениях устройства блокировки должны препятствовать запиранию приводов и выниманию ключа из замка;
— установка механических замков на приводах должна производиться на неподвижных деталях, чтобы не увеличивать инерцию подвижных частей механизма;
— при наличии устройств механической блокировки приводы выключателей (за исключением шиносоединительных) должны запираться блок-замком только в отключенном положении, чтобы выключатели не могли быть включены ни дистанционно, ни вручную. Приводы шиносоединительных выключателей должны запираться в двух положениях: «Включено и «Отключено». При устройстве электромагнитной и электромеханической блокировок установки замков на приводах выключателей не требуется;
— установка механических замков на приводах выключателей (за исключением шиносоединительных) должна выполняться так, чтобы при включенном выключателе невозможно было вынуть ключ из замка;
— необходимо также выполнить указанную блокировку так, чтобы не вызвать отключения выключателей при попытке вынуть ключ из замка;
— блокировка не должна без надобности усложнять или замедлять операции с разъединителями, что особенно важно при большом количестве присоединений. Блокировочная аппаратура должна быть доступна для осмотра при наличии напряжения на блокируемом оборудовании;
— блокировка не должна препятствовать включению и отключению выключателя при разобранной схеме (отключенных разъединителях присоединения). Однако блокировка должна исключать возможность подачи напряжения на заземленные участки присоединений включением выключателя.
2. СИСТЕМЫ ПРИМЕНЯЕМЫХ БЛОКИРОВОК
Наиболее широкое применение получили следующие блокировки: механическая непосредственного действия, электромагнитная и механическая замковая (электромеханическая).
Механическая блокировка непосредственного действия имеет ограниченное применение: для простых схем, а чаще как дополнительное средство при наличии других основных видов блокировок.
Электромагнитная блокировка пригодна для любых схем первичных цепей, проста в эксплуатации.
Механическая замковая и электромеханическая блокировки, основанные на одном и том же принципе, применяются в распределительных устройствах с простыми первичными схемами и небольшим количеством присоединений.
Остальные системы блокировок либо не получили широкого применения, либо в настоящее время заменены указанными выше.
2.1. Механическая блокировка непосредственного действия
Механическая блокировка непосредственного действия в заводском исполнении применяется в комплектных распределительных устройствах (блокировка от перемещений тележки при включенном масляном выключателе, от вкатывания тележки в рабочее положение при включенном заземляющем разъединителе, автоматическое закрытие защитных шторок при выкатывании тележки и др.), а также для блокирования разъединителей с заземляющими ножами. На рис.1 показана механическая блокировка главных и заземляющих ножей разъединителей РНДЗ с приводом ПРН, выполненная в виде дисков (с вырезами), насаженных на валы. Эта блокировка не допускает включения заземляющих ножей при включенных главных ножах и наоборот включения главных ножей при включенных заземляющих ножах.
Рис.1 Механическая блокировка главных и заземляющих ножей разъединителей:
В самых простых схемах, если механическая блокировка непосредственного действия обеспечивает полностью безопасность производства операций, другие типы блокировок применять не следует. При каждой ревизии основного аппарата необходимо проверять работоспособность механической блокировки непосредственного действия.
2.2. Электромагнитная блокировка
Электромагнитная блокировка рекомендуется для распределительных устройств со сложными схемами первичных соединений независимо от напряжения при большом количестве присоединений (более 10). Достоинством этой системы являются ее универсальность (она применима дня любой конструкции распределительного устройства и при любой схеме первичных соединений), простота операций (автоматичность действий КСА) при минимальных затратах времени.
2.2.1. Аппаратура блокировки
Аппаратура для электромагнитной блокировки выпускается двух видов:
— для внутренней установки производства Курского завода низковольтной аппаратуры (замок ЗБ-1, ключ КЗЗ-1);
— для наружной установки (может быть также применена в закрытых распределительных устройствах) производства Рижского опытного завода Латвэнерго (замок ЭМБЗ, ключ ЭМК, розетка У-94Б). Кроме того, применяются блок-контакты КСА, которые используются как для внутренней, так и для наружной установки, и реле РП-23, используемое в качестве реле блокировки (РБЭ) при наличии разъединителей с электродвигательным приводом.
2.2.2. Схемы блокировки
Ниже приведено описание схем блокировки для распределительных устройств и присоединений с наиболее сложными схемами первичных цепей. Схемы блокировки для других схем первичных цепей являются частью описываемых и могут быть составлены самостоятельно. При выполнении приведенных схем оперативной блокировки разъединителей, отделителей и заземляющих ножей исключается возможность неправильных операций.
— для разъединителя, главные ножи которого управляются электродвигательным приводом, должна выполняться электромагнитная блокировка между главными и заземляющими ножами, несмотря на наличие механической блокировки между ними. Это вызвано тем, что включение электродвигателя привода главных ножей может производиться независимо от положения заземляющих ножей. Поэтому для исключения повреждения электродвигателя привода из-за работы в заторможенном режиме или поломки механической блокировки между главным и заземляющими ножами включение электродвигателя запрещается, если заземляющие ножи разъединителя включены (с помощью реле РБЭ);
— для разъединителей с электродвигательным приводом оперативная блокировка осуществляется разрывом цепей управления электродвигательного привода при несоблюдении условий, при которых допустимо оперирование. Разрыв осуществляется контактами реле блокировки РБЭ, обмотка которого включена в цепи оперативной блокировки разъединителя.
Операция переключения прекращается, если во время переключения изменяются условия, при которых эта операция разрешается.
Для возможности осуществления блокировки при ручном управлении главными и заземляющими ножами предусматриваются блок-замки. Шток блок-замка закрывает доступ к валу привода для установки рукоятки ручного оперирования. Шток может быть вытянут только в том случае, если в блок-замок вставлен ключ и соблюдены условия, при которых допустимо оперирование ножами разъединителя.
Приводы снабжены также механизмом блокировки, который исключает возможность осуществления электродвигательного оперирования при ручных операциях. Блокировка выполнена включением в цепи управления электродвигателя привода главных ножей разъединителя контакта конечного выключателя ВК, который размыкается, когда на вал привода устанавливается рукоятка ручного оперирования.
Двойная система шин с шиносоединительным и обходным выключателями (рис.2).
Рис.2. Схема распределительного устройства с двумя системами шин, шиносоединительным и обходным выключателями
Рис.3. Схема блокировки элементов распределительного устройства с двумя
системами шин, шиносоединительным и обходным выключателями
Оперативная блокировка разъединителей
Назначение оперативной блокировки – исключение ошибочных действий оперативного персонала при операциях с разъединителями, отделителями, работе с тележками КРУ и с заземляющими ножами.
При отключении и включении рабочих токов, включении заземляющих ножей на участок ошиновки, находящейся под напряжением, возникает открытая дуга между контактами, которая представляет опасность для оперативного персонала и приводит к повреждению оборудования.
Чтобы не допустить такой ситуации все разъединители должны быть сблокированы со своими выключателями, а заземляющие ножи – со своими разъединителями.
Основные требования к оперативной блокировке:
— Блок-замки блокировки должны запирать приводы разъединителей только в крайних положениях «включено» и «отключено»; они не должны запирать привод разъединителя в промежуточном положении;
— Оперативная блокировка не должна давать ложное разрешение на операции с разъединителями при исчезновении напряжения оперативного тока или неисправностях самой оперативной блокировки.
В том случае, если блокировка не разрешает проведение какой-либо операции, необходимо прекратить переключения и проверить:
— Правильность выбранного присоединения;
— Положение коммутационных аппаратов, связанных с производством переключений;
— Целостность предохранителей в цепях питания блокировки или включенное положение автоматов;
— Исправность электромагнитного ключа.
Если будет выявлена неисправность оперативной блокировки, об этом необходимо сообщить лицу, отдавшему распоряжение о переключениях. Оперативному персоналу самовольно запрещается деблокировать оперативную блокировку.
Деблокирование (со снятием пломб) производится с разрешения лица, имеющего на это право приказом по предприятию (обычно старший диспетчер, начальник ПС и главный инженер).
Бланк переключений переписывается заново, в него вносится запись о деблокировке. Ну, и, конечно, релейный персонал организовывается на поиск неисправности.
Механическая блокировка – это блокировка непосредственного действия, которая может быть выполнена на близко расположенных аппаратах. Например, блокировка разъединителя со своим выключателем в КРУ выполняется в виде запирающей рукоятки, когда при включенном положении выключателя запирается разъединитель и оперировать им не разрешается. Точно таким же образом выполнена механическая блокировка заземляющих ножей со своим разъединителем (когда разъединитель включен, заземляющие ножи надежно заперты рукоятками). Такая блокировка применяется в РУ до 220кВ. Достоинство этой блокировки – простота, недостаток – узкая область применения, может быть выполнена только на близко расположенных аппаратах.
Электромеханическая блокировка более сложная, она применяется в тех случаях, когда есть только дистанционное управление аппаратами со щита управления. Эта блокировка состоит из целого комплекса замков на ключах управления, каждый из которых имеет свои секреты. Открываются эти замки своими ключами только в том случае, если операции с данным аппаратом оперативная блокировка разрешает. Эта блокировка достаточно надежная, однако у нее есть один недостаток – она может быть выполнена только при отсутствии местного управления и только в пределах одной ячейки или системы шин.
Электромагнитная блокировка лишена всех этих недостатков. Она универсальна и может охватывать любое количество присоединений на любой по площади территории. Она условно надежна. Недостатком можно считать наличие длинных кабелей, плохая регулировка контактов КСА разъединителей и ножей, обрывы в кабельных жилах.
Принцип действия электромагнитной блокировки:
Исполнительным органом электромагнитной блокировки является блок-замок, устанавливаемый на приводе каждого коммутационного аппарата. В этом замке есть контакты, на которых напряжение будет только в том случае, если допускаются операции с приводом. Блок-замок отпирается с помощью электромагнитного ключа. Ключ – один на все присоединения.
Номинальный ток трансформатора (линейный ток) каждой обмотки 1л определяется по ее номинальной мощности Sном (кВА) и номинальному напряжению Uном (кВ):
Обмотки трансформатора могут быть соединены в звезду, при котором фазный ток равен линейному (Iф = Iл), или в треугольник, при котором фазный ток в √3 раз меньше линейного (Iф = Iл / √3).
Для трансформаторов, имеющих обмотки с ответвлениями, номинальным током и напряжением являются соответствующие значения для ответвления, включенного в сеть.
Трехобмоточные трансформаторы допускают в номинальном режиме любое сочетание нагрузок по обмоткам, если токи в них не превышают номинальных фазных токов.
Конструктивно автотрансформатор отличается от трансформатора тем, что две его обмотки электрически соединяются между собой, обеспечивая тем самым передачу мощности от одной обмотки к другой не только электромагнитным, но и электрическим путем. Из-за наличия электрической связи между обмотками токораспределение в автотрансформаторе отличается от токораспределения в трансформаторе. Во вторичной цепи ток нагрузки складывается из тока, обусловленного электрической связью обмоток высшего и среднего напряжений и тока Io, обусловленного магнитной связью этих же обмоток.
Номинальная мощность автотрансформатора (Sном) представляет собой мощность на выводах его обмоток высшего (ВН) или среднего (СН) напряжения, имеющих между собой автотрансформаторную связь, и равна:
Типовая мощность автотрансформатора (Sтип) представляет собой ту часть номинальной мощности, которая передается электромагнитным путем, и она в α раз меньше номинальной мощности, то есть
где α — коэффициент выгодности автотрансформатора, равный
где КВН-СН — коэффициент трансформации.
Из приведенных формул (2.3 и 2.4) видно, что с увеличением коэффициента а, то есть сближением друг к другу значений UCН и UВН, типовая мощность становится ближе к номинальной, и наоборот, а именно: чем меньше коэффициент а, тем меньшую долю номинальной составляет типовая мощность. Поэтому нельзя (экономически нецелесообразно) загружать последовательную и общую обмотки автотрансформатора в номинальном режиме работы более чем на типовую мощность Sтип.
Основным назначением обмотки низшего напряжения (НН) является создание цепи с малым сопротивлением для прохождения токов третьих гармоник с целью избежания искажения синусоидального напряжения. Помимо этого обмотка НН используется для питания нагрузки, а также для подключения компенсирующих устройств и последовательно-регулировочных трансформаторов. Ее мощность выбирается из расчета не более типовой мощности (SНН ≤ Sтип). В противном случае размеры автотрансформатора определялись бы мощностью этой обмотки.
Обязательное заземление нейтралей автотрансформаторов вызывает чрезмерное увеличение токов КЗ в сетях, что приводит к необходимости принятия мер по их ограничению.
Кроме того, наличие электрической связи между обмотками и сетями СН и ВН может привести к переходу перенапряжений, возникающих в сетях одного напряжения, на выводы обмоток другого напряжения. Возникновение перенапряжений усугубляется при отключении автотрансформатора с одной стороны. Для устранения воздействия перенапряжений на изоляцию автотрансформатора со стороны СН и ВН применяются разрядники, которые напрямую (без разъединителей) присоединяют к шинам, отходящим от вводов.
Автотрансформаторы могут работать в одном из следующих режимов: автотрансформаторный, трансформаторный и комбинированный (трансформаторно-автотрансформаторный).
Перераспределение нагрузок между обмотками СН и НН производится оперативным персоналом согласно местным инструкциям с использованием соответствующих таблиц и графиков.
Соотношение мощностей зависит от нагрузки и определяется из следующей формулы:
где S2 и S3 — относительные мощности по обмоткам СН и НН, выраженные в долях номинальной мощности автотрансформатора, то есть S2 = SСН / Sном и S3 = SНН / Sном;
φ2 и φ3 — углы сдвига фаз токов обмоток СН и НН от напряжения обмотки ВН.
На ПС 220 кВ и выше, на которых не предусматривается нагрузка на напряжение 6—10 кВ, рекомендуется применение автотрансформаторов 220 кВ мощностью 63 или 125 МВА с третичным напряжением 0,4 кВ для питания собственных нужд ПС.
Возьмём трансформатор с двумя обмотками: первичной — W1 для подключения к сети и вторичной — W2 для подключения нагрузки. Его упрощенное устройство и условно-графическое обозначение на схемах показано на рисунке 1.
Рисунок 1 Условно-графическое обозначение трансформатора
Возможны три режима работы трансформатора: режим холостого хода (ХХ), рабочий режим (номинальный) и режим короткого замыкания (КЗ). Рассмотрим работу трансформатора в этих режимах.
Режим холостого хода. В этом режиме сопротивление нагрузки равно бесконечности, в результате чего трансформатор эквивалентен обычной катушке индуктивности с ферромагнитным сердечником. В режиме холостого хода трансформатор можно представить схемой замещения, приведенной рисунке 2.
Рисунок 2 Схема замещения трансформатора для режима холостого хода (а — последовательная, б — параллельная)
В эквивалентной схеме трансформатора, приведенной на рисунке 2:
r1 — активное сопротивление первичной обмотки
LS1 — индуктивность, характеризующая поток рассеяния первичной обмотки
r0 — сопротивление активных потерь в магнитопроводе
L0 — основная индуктивность первичной обмотки
(1)
Iμ – ток, создающий основной магнитный поток (ток намагничивания)
Ia – ток активных потерь в сердечнике
Параллельная эквивалентная схема трансформатора удобна для построения векторной диаграммы напряжений и токов для реальной катушки индуктивности. Векторная диаграмма приведена на рисунке 3.
Рисунок 3 Векторная диаграмма напряжений и токов трансформатора в режиме холостого хода
Здесь δ — угол потерь в магнитопроводе
X1 — сопротивление индуктивности рассеяния LS1.
При этом вектор ЭДС индуцированный в обмотке W2 (напряжение во вторичной обмотке) совпадает по фазе с eL, а напряжение U1 является суммой
;
(2)
Потери на омическом сопротивлении обмотки малы, поскольку ток холостого хода много меньше номинального и угол сдвига между током и напряжением (I10 иU1) определяется потерями в магнитопроводе. Из опыта холостого хода и находят угол потерь δ и рассчитывают потери в сердечнике.
Трансформатор является обращаемым устройством (первичную и вторичную обмотки можно поменять местами!), поэтому для каждой из обмоток записываемосновную формулу трансформаторной ЭДС.
(3)
(4)
Разделив уравнение (3) на (4), получим выражение для коэффициента трансформации:
(5)
В режиме холостого хода трансформатора как раз и определяют его коэффициент трансформации.
Рабочий режим (нагруженный или номинальный). Если к вторичной обмоткеW2 подключить нагрузку Rн, то ее напряжение U2 вызовет ток нагрузки I2, как это показано на рисунке 1б. Токи I1 и I2 ориентированы различно относительно магнитного потока Ф0. Ток I1 создает поток Ф1, а ток I2 создаёт поток Ф2 и стремится уменьшить поток Ф1. Иначе говоря, в магнитопроводе появляются магнитные потоки Ф1 и Ф2, которые на основании закона Ленца направлены встречно и их алгебраическая сумма даёт: Ф1 + Ф2 = Ф0 — магнитный поток холостого хода трансформатора.
Отсюда можно записать уравнение намагничивающих сил (закон полного тока):
(6)
Видно, что изменение тока I2 обязательно приведёт к изменению тока I1. Нагрузка образует второй контур, в котором ЭДС вторичной обмотки е2 является источником энергии. При этом, справедливы уравнения:
(7)
(8)
где r2 — омическое сопротивление вторичной обмотки
х2 — сопротивление индуктивности рассеяния вторичной обмотки.
По закону Киргофа сумма токов (6) может быть обеспечена параллельным соединением электрических цепей, поэтому в рабочем режиме трансформатор можно представить эквивалентной схемой, приведенной на рисунке 4.
Эквивалентная схема трансформатора в рабочем режиме, приведенная на рисунке 4 называется Т-образной схемой замещения или приведённым трансформатором. Приведение вторичной обмотки к первичной выполняется при условии равенства полных мощностей вторичных обмоток , или
. Из этого равенства можно получить формулы пересчета в первичную обмотку напряжений и токов вторичной обмотки и из них получить приведенные значения сопротивлений нагрузки, вторичной обмотки и индуктивности рассеивания.
(9)
(10)
(11)
(12)
(13)
Токи и напряжения приводятся через коэффициент трансформации, а сопротивления — через квадрат коэффициента трансформации. Можно пересчитать вторичную цепь в первичную или наоборот.
Представление трансформатора в виде эквивалентной схемы позволяет методами теории цепей рассчитать любую, сколь угодно сложную схему с трансформаторами.
Режим короткого замыкания (КЗ). Этот режим в условиях эксплуатации является аварийным. Он сознательно применяется только для экспериментального определения параметров трансформатора (индуктивности рассеивания). Измерения проводят в следующей последовательности. Входное напряжение устанавливают равным нулю. Замыкают выходные клеммы (U2 = 0). Плавно поднимают входное напряжение (U1) до тех пор, пока в обмотках не установятся номинальные токи. Величина U1 = UКЗ называется напряжением короткого замыкания, является паспортной величиной трансформатора и обычно составляет 5. 10% от номинального напряжения U1ном. При этом, ток холостого хода I10 весьма мал по сравнению с номинальным и им можно пренебречь (считать равным нулю). Тогда эквивалентная схема трансформатора в режиме КЗ принимает вид, показанный на рисунке 5.
Рисунок 5 Эквивалентная схема трансформатора в режиме короткого замыкания
Ток холостого хода мы приняли равным нулю I10= 0, поэтому в эквивалентной схеме трансформатора параллельная цепь L0r0 отсутствует. Входное сопротивление трансформатора полностью определяются индуктивностью рассеивания первичной и вторичной обмоток, а также их омическим сопротивлением:
(14)
Результирующее сопротивление — это сопротивление короткого замыкания трансформатора. Зная полное сопротивление короткого замыкания:
можно найти коэффициент передачи трансформатора, а в случае малой индуктивности рассеивания потери мощности в обмотках трансформатора.
Намагничивающая сила, создающая магнитный поток в сердечнике в режиме короткого замыкания (измерительный режим) практически равна нулю:
и если I10 = 0, то I1W1 = −I2W2 откуда находим отношение токов, а значит и коэффициент трансформации по току:
(15)
Знак минус в формуле (15) говорит о том, что магнитные потоки Ф1 и Ф2направлены навстречу друг другу и взаимно компенсируются.Если у трансформатора есть несколько вторичных обмоток, как показано на условно-графическом изображении трансформатора, приведенном на рисунке 6а, то пересчитанные сопротивления нагрузки на эквивалентной схеме соединяются параллельно и его эквивалентная схема принимает вид, показанный на рисунке 6б.
17 Классификация механизмов собственных нужд АЭС по надежности питания.
Перерыв в питании некоторых электроприемников АЭС может привести к опасности для жизни, вредному влиянию на окружающую среду и повреждению основного оборудования. Для этой группы требуется уже три независимых источника питания, один из которых — аварийный — нормально не работает и автоматически подключается при плановом или аварийном отключении одного из двух основных источников.
Электроприемники собственных нужд АЗС целесообразно разделить на три группы по надежности питания (в пределах I категории по ПУЭ): I группа — потребители, не терпящие перерыва ни при каких режимах, включая полное исчезновение напряжения переменного тока от рабочих и резервных трансформаторов собственных нужд, связанных с сетью энергосистемы, либо допускающие перерыв на доли секунды с последующим обязательным восстановлением питания и длительным надежным электроснабжением даже после срабатывания аварийной защиты реактора; II группа — потребители, допускающие перерыв в питании на время от десятков секунд до нескольких минут с последующим обязательным восстановлением питания после срабатывания аварийной защиты; III группа — потребители, предъявляющие к надежности питания такие же требования, как и ответственные потребители собственных нужд обычных ТЭС.
К потребителям I группы относятся системы контрольно-измерительных приборов и автоматики, приборы технологического контроля реактора и системы его управления и защиты, системы памяти и логики информационно-вычислительной машины блока, системы дозиметрии, часть аварийного освещения (на щитах управления с дежурным персоналом и в основных проходах станции), а также некоторые нагрузки, существующие и на ТЭС: оперативные цепи управления и сигнализации, аварийные маслонасосы турбины и уплотнения вала генератора.
К потребителям первой группы относятся и бессальниковые ГЦН с малыми маховыми массами.
При использовании ГЦН с большими маховыми массами, допускающими перерыв в питании на время действия АВР и на время отключения коротких замыканий в системе без срабатывания аварийной защиты и обеспечивающими отвод остаточных тепловыделений при аварийном расхолаживании до перехода на естественную циркуляцию, их можно отнести к потребителям III группы.
Другими мощными потребителями собственных нужд, которые в зависимости от технологической схемы АЭС и типа механизмов могут относиться к различным группам по надежности питания, являются питательные насосы. Если применены барабанные парогенераторы, то питательные насосы независимо от типа могут быть отнесены к III группе, а аварийные питательные насосы — ко И группе, так как запаса воды в парогенераторах достаточно для аварийного расхолаживания в течение нескольких минут. Если применены прямоточные парогенераторы без сброса давления в них при аварийном расхолаживании, то питательные насосы с малыми маховыми массами должны быть отнесены к I группе, а аварийные — ко II группе.
К потребителям II группы относятся механизмы, обеспечивающие расхолаживание реактора и основного технологического оборудования, останов турбогенератора, локализацию аварии в пределах герметичных помещений, вентиляцию реакторного отделения и спецкорпуса, аварийное освещение.
В эту группу входят следующие потребители: насосы аварийного охлаждения реактора, аварийные подпиточные насосы высокого давления, насосы системы борного регулирования, спринклерные насосы, рабочие маслонасосы турбин, насосы баков запаса обессоленной воды, насосы технической воды ответственных потребителей, а также вышеупомянутые аварийные питательные насосы и часть электронагревателей компенсаторов объема.
Для питания потребителей I и II групп предусматриваются специальные сети надежного питания, рассмотренные ниже.
К потребителям III группы относятся все остальные нагрузки собственных нужд, и схемы их питания не отличаются от аналогичных схем обычных ТЭС.
3.3 Схемы электрических соединений с.н.
Для потребителей С.Н. АЭС должно предусматриваться нормальное рабочее и резервное питание от рабочих и резервных трансформаторов собственных нужд и аварийных источников питания. В качестве аварийных источников питания применяются:
аккумуляторные батареи (АБ) и АБ со статическими преобразователями;
автоматизированные дизель – генераторы (ДГ) и газотурбинные установки.
3.3.1 Схема электрических соединений 6 кВ для потребителей 3 группы надежности
Сборные шины 6 кВ для потребителей 3 группы разделены на секции, количество которых выбирается, в зависимости от количества ГЦН первого контура и от количества трансформаторов с.н. (ТСН). Каждая секция присоединяется к рабочему источнику через свой выключатель. Для реакторной установки ВВЭР – 1000 устанавливают 4 таких секции – ВА, ВВ, ВС, ВД. Рабочее питание этих секций осуществляется от ТСН, в качестве которых целесообразно использовать трансформаторы с расщепленными обмотками низкого напряжения. На каждую из этих секций предусматривается ввод от магистралей резервного питания BL, BM, BN, BP, подключенных к резервным ТСН.
3.3.2 Схема электрических соединений 0,4 кВ для потребителей 3 группы надежности
Потребители секции 0,4 кВ 3 группы надежности получают питание от шин 6 кВ 3 группы надежности через понижающие трансформаторы 6,3 / 0,4 кВ. Мощность этих трансформаторов не должна превышать 1000 кВ*А при Uк = 8%. Каждая из секций 0,4 кВ должна иметь два источника питания: рабочий и резервный. В качестве рабочего источника используется отдельный трансформатор или общий для двух секций. В качестве резервного источника – либо отдельный резервный трансформатор, либо взаимное резервирование 2-х рабочих трансформаторов. В последнем случае между секциями должен быть предусмотрен секционный автомат с АВР.
3.3.3 Схемы электрических соединений 6 кВ и 0,4 кВ для потребителей 2 группы надежности
На АЭС должны быть предусмотрены автономные системы безопасности в технологической части и автономные системы надежного питания на напряжениях 6 кВ и 0,4 кВ, включающие распределительные устройства и автономные источники питания (ДГ).
Питание потребителей 6 кВ второй группы надежности (система безопасности)
Для питания потребителей 6 кВ и трансформаторов 6 / 0,4 кВ, 6 / 0,23 кВ 2 группы надежности предусмотрены секции 6 кВ, количество которых должно соответствовать числу каналов системы безопасности: для ВВЭР – 1000 – 3 секции (BV, BW, BX). Каждая из этих секций подключается к рабочему источнику питания (блочной секции 6 кВ 3 группы надежности) через два выключателя. Основные потребители секций BV, BW, BX: насосы аварийного охлаждения зоны, аварийные питательные насосы, спринклерные насосы и т. п.
В случае исчезновения напряжения на этих секциях, питание на них подается от ДГ мощностью 5600 кВт каждый. Между тремя секциями 6 кВ надежного питания и ДГ не предусматривается взаимное резервирование. Каждая из секций способна по мощности обеспечить аварийное расхолаживание при любой аварии. При возникновении аварийной ситуации сигнал на запуск ДГ должен подаваться независимо на каждый из них; набор нагрузки осуществляется автоматически, ступенями. ДГ постоянно находятся в режиме «горячего резерва».
Питание общеблочных потребителей 6 кВ 2 группы надежности
Для обеспечения надежным питанием механизмов, отвечающих за сохранность основного оборудования машинного зала и реакторного отделения, энергоблоки оснащаются системой надежного питания общеблочных потребителей 2 группы в режиме обесточения. В составе системы надежного питания общеблочных потребителей 6 кВ:
две общеблочные секции 6кВ BJи BK, связанные перемычкой c 2 выключателями;
автономный ДГ с системами питания его собственных нужд.
При нарушении электроснабжения шин надежного питания 6кВ общеблочных потребителей предусмотрены следующие режимы:
при обесточении 1-ой секции – включаются секционные выключатели;
при обесточении 2-х секций – запускаются два ДГ (своего и соседнего блоков).
Питание потребителей 0,4 кВ второй группы надежности (система безопасности)
От каждой секции надежного питания 6 кВ питаются две секции 0,4 кВ через понижающие трансформаторы. Состав механизмов, подключенных к секциям 0,4 кВ и мощность трансформаторов, должны быть рассчитаны на 100% нагрузку потребителей 0,4 кВ в одной системе безопасности.
Питание общеблочных потребителей 0,4 кВ 2 группы надежности
Потребители этой группы получают питание от секций CJ, CK, каждая из которых питается через понижающий трансформатор 6,3 / 0,4 кВ от секций BJ и BK. Секции CJ, CK связаны перемычкой с 2-мя выключателями вводов резервного питания, на которые должна быть предусмотрена подача напряжения от резервного трансформатора 6,3 / 0,4 кВ от секции CR. Секции CJ, CK секционированы. При нарушении электроснабжения секций должна быть предусмотрена возможность подачи питания от резервного трансформатора 6,3 / 0,4 кВ соседнего блока
атмосферного воздуха, пожарная безопасность
1.2.3. Перед приемкой в эксплуатацию энергообъекта(пускового комплекса) должны быть проведены: индивидуальные испытания оборудования и функциональные отдельных систем, завершающиеся для энергоблоков пробным