Что такое органика в биологии
Органические вещества
Органические соединения, органические вещества — класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). [1]
Содержание
История
Название органические вещества появилось на ранней стадии развития химии во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis ), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1828 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.
Количество известных органических соединений составляет почти 27 млн
. Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Классификация
Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Характерные свойства
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.
Номенклатура органических соединений
Органическая номенклатура — это система классификации и наименований органических веществ. В настоящее время распространена номенклатура ИЮПАК.
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.
В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.
Алифатические соединения
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Ароматические соединения
Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)
Гетероциклические соединения
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом
Полимеры
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).
Структурный анализ органических веществ
В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
Спектроскопия ядерного магнитного резонанса ЯМР.
Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе
Про другие методы смотрите в разделе Аналитическая химия.
Что такое органика в биологии
Из-за блокировщика рекламы некоторые функции на сайте могут работать некорректно! Пожалуйста, отключите блокировщик рекламы на этом сайте.
Органические вещества – важные и необходимые компоненты клетки, они являются поставщиками энергии, без которой невозможно проявление любой формы жизнедеятельности; они образуют структуры клетки.
Существует 20 независимых аминокислот, входящих в белки.
Белки — обязательная составная часть всех клеток. В жизни всех организмов белки имеют первостепенное значение. В состав белка входят углерод, водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты. У каждой аминокислоты имеется карбоксильная группа (-СООН) и аминогруппа (-NH2). Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Между соединившимися аминокислотами возникает связь называемая пептидной, а образовавшееся соединение нескольких аминокислот называют пептидом. Соединение из большого числа аминокислот называют полипептидом. В белках встречаются 20 аминокислот, отличающихся друг от друга своим строением. Разные белки образуются в результате соединения аминокислот в разной последовательности. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся у них белков.
В строении молекул белков различают четыре уровня организации:
Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
Вторичная структура — полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается мало прочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также ковалентными S-S-связями возникающими между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина.
Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными. Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков.
Нарушение природной структуры белка называют денатурацией. Она может возникать под действием высокой температуры, химических веществ, радиации и т.д. Денатурация может быть обратимой (частичное нарушение четвертичной структуры) и необратимой (разрушение всех структур).
1. каталитическая (ферментативная) — расщепление питательных веществ в пищеварительном тракте, фиксация углерода при фотосинтезе, участие в реакциях матричного синтеза;
2. транспортная — транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа гемоглобином, транспорт жирных кислот сывороточным альбумином;
3. защитная — антитела, обеспечивающие иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь;
4. структурная — кератин волос и ногтей, коллаген хрящей, сухожилий, соединительных тканей;
5. сократительная— сократимые белки мышц: актин и миозин;
6. рецепторная — примером могут служить фитохром — светочувствительный белок, регулирующий фотопериодическую реакцию в растениях, и опсин — составная часть родопсина — пигмента, находящегося в клетках сетчатки глаза.
Органические соединения
Органические вещества — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).
Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя — ученые той эпохи считали, что живые существа состоят из особых органических соединений.
Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому, несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы, «классические» органические соединения содержат прежде всего водород, кислород, азот и серу.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Количество известных органических соединений давно перевалило за 10 млн; таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, т. е. стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.
Содержание
Органическая номенклатура
Органическая номенклатура —это система классификации и наименований органических веществ.
Классификация
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.
Классификация органических веществ.
Алифатические соединения
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Ароматические соединения
Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)
Гетероциклические соединения
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом
Полимеры
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).
Структурный анализ органических веществ
В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.
Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
Спектроскопия ядерного магнитного резонанса ЯМР.
Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе
Про другие методы смотри в разделе Аналитическая химия.
Органические и неорганические вещества – что это и отличия
Органические и неорганические вещества – эти термины знакомы каждому человеку из школьной программы по биологии или химии. Также о них слышали садоводы. Что представляют собой и чем отличаются подобные вещества, способны объяснить не все. Для того чтобы лучше разобраться в особенностях и понять нюансы, рекомендуется сначала дать определение для каждого из рассматриваемых понятий, а затем провести сравнение по ключевым характеристикам.
Определение понятий
Органические вещества – соединения, которые имеют сложную химическую структуру (молекулярное строение). Они имеют невысокую температуру плавления, при воздействии высоких температур распадаются на несколько простых компонентов. Реакция протекает с выделением углекислого газа и воды. В молекулах присутствуют углерод и водород. Происхождение природное.
Неорганические вещества – химические соединения, имеющие простое молекулярное строение и небольшую массу. Температуры плавления высокие. Разложение происходит длительное время. Природа происхождения как биологическая, так и искусственная (промышленность).
Сравнение
Некоторые отличия между органикой и неорганическими веществами стала понятна из приведенных определений, но для более подробного разбора и выявления отличий, следует провести сравнение. Органика распадается за короткий промежуток времени на простые составные элементы – белки, углеводы, липиды. Разнообразие органики – результат наличия в ее молекулах углерода. Органические вещества способны к процессу изометрии. В результате образуются соединения, которые имеют одинаковый набор атомов в молекулах. Достичь разнообразия в этом случае позволяет различное положение атомов в молекулах образовавшихся веществ. Самыми распространенными являются такие соединения, как фруктоза и глюкоза. В них находится одинаковый набор атомов, но расположение отличается, поэтому свойства этих компонентов и их работа в химических реакциях различаются.
Неорганические вещества, самым распространенным из которых является вода, обладают небольшой молекулярной массой. Неорганики по современной классификации насчитывается всего около 100 тысяч, против органических соединений, которых представлено более 18 млн. Неорганические составляющие не способы к процессам изометрии. К неорганике также относятся различные металлы, соли, оксиды, различные смеси и простые вещества.
Выводы
Проведя сравнение, можно с уверенностью сказать, что различия между органическими и неорганическими веществами выражены в особенностях молекулярной структуры. Температура плавления и скорость разложения также являются факторами, указывающими на различия между рассматриваемыми понятиями. Наличие таких составляющих как водород и углерод характерны для органических соединений. Происхождение неорганики не всегда природное, многие компоненты являются плодом технических, производственных и научных изысканий. Общее количество неорганических веществ составляет по современной классификации 100 тысяч. Органика же превосходит числом, таких элементов в классификации представлено более чем в 10 раз больше. Органика имеет сложную структуру молекулярной сетки, неорганика — простую. Для того чтобы запустить процессы разложения в первом случае не требуется нагрева до высоких температур (например, мясо портиться при комнатной температуре, а для плавления металлов требуется длительный нагрев).
В состав молекул всех органических веществ входит углерод, но нужно учитывать и особенности этой группы компонентов. Так в карбидах или цианидах нет этого элемента. Уникальным свойством углерода является способность образовывать цепочки из атомов. Благодаря подобной способности соединений из одного и того же атомного набора может появляться очень много.
Урок Бесплатно Органические вещества клетки. Белки. Жиры. Углеводы
Ведение
В клетках нашего организма помимо неорганических веществ содержатся органические вещества, которые необходимы клетке для построения ее структур и обеспечения нормальной жизнедеятельности не только отдельно взятой клетки, но и всего организма в целом.
Органические вещества, которые входят в состав живого организма, многообразны, и многие из них имеют очень сложное молекулярное строение.
Каждое сложное органическое вещество построено из повторяющихся единиц- мономеров.
Если мономеров в веществе большое количество, то такое вещество называют полимер ( от греч. «поли»- много, «мерос»- часть).
Если полимеры встречаются в природе в естественном виде, то есть входят в состав живых организмов, их называют биополимерами.
Количество мономеров в молекуле полимера может исчисляться от нескольких штук до десятков миллионов.
К примеру, молекула ДНК бактерий построена более чем из 3 млн мономеров (нуклеотидов).
Основные и наиболее важные группы органических веществ клетки:
Сегодня мы рассмотрим эти группы органических веществ, узнаем их строение и значение для организма.
Белки
Белки- это биополимеры, мономерами которых являются аминокислоты.
Аминокислоты содержат в своём составе карбоксильную (-СООН) и аминогруппу (-NH2)
Молекулы белка могут содержать сотни и даже тысячи аминокислотных остатков.
А если молекула содержит до 100 аминокислотных остатков, то принято называть эту молекулу пептидом.
Также в состав белков входят углерод, водород, кислород и азот, сера.
Белок характеризуется определенной последовательностью аминокислот. Благодаря этой последовательности формируется химическая формула белка, то есть его структура.
Кроме определенной последовательности аминокислотных остатков, очень важна и трехмерная структура белка, которая формируется в результате сворачивания цепочки из аминокислот.
Аминокислотные остатки в белке связаны пептидной связью:
Выделяют четыре структуры белка:
Структуры белка
Строение
Типы химических взаимодействий(связи)
Примеры белков и графическое изображение
Первичная структура
(линейная)
Последовательность аминокислотных остатков в полипептидной цепи
Альбумин, яичный белок, состоит из аминокислот. Мономеры связаны пептидными связями, молекула образует первичную, вторичную и третичную структуры
Скручивание в спираль первичной структуры белка, стабилизировано водородными связями и гидрофобными взаимодействиями
Водородные между пептидными группами (C=O…H–N) и гидрофобные связи
Альбумин- вареный яичный белок, кератин (в сухожилиях человека), коллаген (в волосах, ногтях)
Упаковка вторичной спирали в клубок- глобулу (в виде шарика), также встречается фибриллярная структура (в виде волокон)
Ковалентные связи, ионные (электростатические) взаимодействия (между противоположно заряженными аминокислотными остатками);
Объединение нескольких глобул в сложный комплекс
Фибриллярные и глобулярные белки:
Фибриллярные белки
Глобулярные белки
Представляет собой длинные, узкие закрученные нити
Имеет округлую, сферическую форму
Отчасти растворимы (образуют коллоидные растворы)
Коллаген (кожа, кости, зубы, сухожилия), кератин (волосы, ногти)
Гемоглобин (в эритроцитах), инсулин (гормон поджелудочной железы), каталаза (обеспечивает распад пероксида водорода в живых клетках)
Структура и функции
Коллаген существует в виде тройной спирали, механически стойкой и прочной.
Много в сухожилиях, связках, соединительной ткани, мышцах, коже и других тканях, испытывающих на себе сильное механическое воздействие, выполняют структурную и сократительную функцию
Выполняют различные функции в клетках.
У меня есть дополнительная информация к этой части урока!
Гемоглобин- белок содержащийся в кровяных клетках, эритроцитах, который переносит кислород и углекислый газ, обладает четвертичной структурой.
В связывании кислорода принимает участие непосредственно ион железа, который содержится в молекуле гемоглобина.
Оксид углерода СО (угарный газ) связывается с железом в сотни раз прочнее кислорода, поэтому угарный газ смертельно опасен для человека, поскольку лишает гемоглобин возможности присоединять кислород
Денатурация и ренатурация белков
Белки могут быть активны в организме и выполнять свою функцию только при определенных физических показателях.
Например, при повышении или понижении температуры, радиации, воздействии кислот естественная структура белка может нарушаться, что, в свою очередь, может привести к гибели всей клетки.
Процесс разрушения характерной для данного белка естественной структуры (вторичной, третичной, четвертичной), носит название денатурация.
Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка.
Как правило, при этом первичная структура белка не разрушается.
Пример денатурации является свертывание яичного белка при его варке.
Денатурация бывает обратимой и необратимой.
При варке яйца происходит необратимая денатурация, так как исходную структуру восстановить уже практически невозможно и происходит разрыв большого количества связей.
Обратимая денатурация происходит если возможно восстановление свойственной белку структуры.
Если белок подвергся обратимой денатурации, то при восстановлении нормальных условий среды он способен полностью восстановить свою структуру и, соответственно, свои свойства и функции.
Процесс восстановления структуры белка после денатурации называется ренатурацией.
Функции белков в организме связаны с пространственной структурой белка и зависят от последовательности аминокислот в белке.
Основные функции белков:
Пройти тест и получить оценку можно после входа или регистрации
Липиды (жиры)
Липиды— сборная группа биологических соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге.
Таким образом, липиды — это гидрофобные соединения, то есть их молекулы по своим свойствам «стремятся» избежать контакта с водой.
Липиды широко распространены в природе и являются обязательным компонентом каждой живой клетки и ее мембран.
Липиды в клетке образуются на гладкой эндоплазматической мембране.
Они образуют энергетический резерв организма и участвуют в передаче нервного импульса, в создании водоотталкивающих и термоизоляционных покровов и др.
У меня есть дополнительная информация к этой части урока!
Особое место среди липидов занимают стероиды: полициклический спирт холестерол (чаще называемый холестерин) и его производные.
Холестерин и его эфиры с жирными кислотами входят в состав биологических мембран клеток животных, придавая им определенную «жесткость».
У растений и грибов холестерин не встречается, его место у растений занимает стероид стигмастерол, а у грибов- эргостерол.
У животных из холестерина образуются гормоны
Пройти тест и получить оценку можно после входа или регистрации