Что такое отношение отрезков
Что такое отношение отрезков
ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ. ПОДОБИЕ ФИГУР.
§ 82. ОТНОШЕНИЕ ОТРЕЗКОВ.
Отношением двух отрезков называется отношение тех чисел, которые выражают длины этих отрезков при условии, что отрезки измерены единицами одного наименования.
В арифметике отношением одного числа к другому называется частное от деления первого числа на второе, поэтому можно сказать, что отношением одного отрезка к другому является частное от деления длины первого отрезка на длину второго, если длины отрезков выражены в единицах одного наименования.
Отношение одного отрезка к другому обычно изображается в виде частного (дроби): AB /CD.
Если даны два отрезка АВ = 6 см и СD = 4 см, то отношение отрезка АВ к отрезку СD равно 6 /4, т. е.
В этом случае делимое (АВ) называется предыдущим членом отношения,
делитель (СD) — последующим членом отношения, а частное (1,5) — отношением.
Отношение отрезка СD к отрезку АВ равно 4 /6, т. е.
Если длины отрезков выражены приближённо, то отношение тоже получится приближённым.
2. Независимость отношения от принятой единицы измерения.
Пусть мы имеем два отрезка, длины которых выражены в метрах. Например: АВ = 6 м, ОС = 2 м. Найдём их отношение:
Изменится ли величина отношения, если мы длины этих отрезков выразим в других мерах, например в сантиметрах? Тогда АВ = 600 см, ОС = 200 см. Найдём их отношение:
Отношение отрезков в том и другом случае не изменилось, так как для выражения длин отрезков в сантиметрах мы оба члена отношения АВ и ОС умножили на одно и то же число (на 100). Значит, отношение отрезков не зависит от выбора единиц измерения.
Необходимо лишь, чтобы длины обоих отрезков были выражены мерами одного и того же наименования.
1. Найти отношение отрезков AВ и СD при условии, если:
а) АВ = 12см, СD = 3 см;
б) АВ = 2 м; СD = 80 см.
2. Найти отношение отрезков АВ и СD с точностью до 0,1 и 0,01 при условии, если:
а) АВ = 7 см, СD = 3 см;
б) АВ = 13 см, СD = 7 см.
51. Планиметрия
Читать 0 мин.
51.506. Отношения
Зачастую в геометрических задачах в условии даются отношения отрезков и площадей или отношение отрезков нужно найти. Существует ряд теорем и свойств фигур и их элементов, в которых так или иначе используются отношения.
ОТНОШЕНИЯ ОТРЕЗКОВ:
1. Все медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины: AO : AM = 2 : 1.
4. Диагонали параллелограмма точкой пересечения делятся пополам.
Произвольный параллелограмм или ромб:
Прямоугольник или квадрат:
ОТНОШЕНИЯ ПЛОЩАДЕЙ:
2. Треугольник делится тремя медианами на шесть равновеликих треугольников:
ЛЕММЫ О ПЛОЩАДЯХ ТРЕУГОЛЬНИКА:
Площади подобных фигур относятся как квадрат коэффициента подобия.
Если стороны треугольников с общей вершиной лежат на одной прямой, то их площади относятся как основания.
Если два треугольника имеют общую сторону, то их площади соотносятся как длины отрезков BE и OE.
Если два треугольника имеют общий угол, то их площади соотносятся как произведения соответствующих сторон, прилежащих к этому углу.
Лемма 4 применима даже в том случае, если точки нового треугольника были взяты не на сторонах, а на продолжениях сторон. Пусть точка Е лежит на продолжении стороны AB за вершину В.
Пропорциональные отрезки
Всего получено оценок: 316.
Всего получено оценок: 316.
Пропорциональные отрезки очень важны для определения подобия фигур. К тому же, правильно нареченные пропорционально рисунки помогают в правильном решении математических задач. Именно поэтому так важно разбираться в данной тематике.
Определение
Пропорциональными отрезками называются отрезки, у которых имеется постоянный коэффициент пропорциональности. Под коэффициентом пропорциональности понимается отношение длин отрезков.
Рис. 1. Пропорциональные отрезки.
Согласно определению пропорциональных отрезков, два отрезка всегда пропорциональны между собой, поскольку их длины не меняются со временем. Значит, не меняется и коэффициент пропорциональности.
Несмотря на это, чаще всего под пропорциональными отрезками понимают отрезки с коэффициентом кратным 0,5. Например, отрезки с коэффициентом 2,5, 1,5, 2 и тому подобные.
Пропорциональными будут являться и отрезки, составляющие подобные фигуры. Это действует в обе стороны. Если фигуры подобны, то их стороны пропорциональны, если все стороны пропорциональны, то фигуры подобны.
Подобные фигуры
Нужно понимать, что подобными фигурами могут быть не только треугольники, но вообще любые фигуры в геометрии, если все углы этих фигур равны, а длины сторон пропорциональны.
Рис. 2. Подобные фигуры.
Но при этом признаки подобия существуют только для треугольников. Их всего 3:
Пропорциональными могут быть только отрезки, как объекты имеющие длину. Прямая или луч бесконечны, а потому не могут быть подобными.
Пример
Решим небольшую задачу на пропорциональность отрезков. Имеется 3 пропорциональных отрезка. Каждый из которых больше предыдущего. Первый отрезок равен 5, третий 20. Необходимо найти длину второго отрезка.
Отрезки пропорциональны, значит отношение больших к меньшим будет постоянным. Обозначим неизвестны отрезок за х и решим уравнение.
Перенесем выражение из правой части в левую. Приведем получившееся выражение под один знаменатель и решим дробно-рациональное уравнение.
Что мы узнали?
Мы узнали, что такое пропорциональные отрезки. Выделили области, где могут быть применены навыки обращения с пропорциональными длинами и привели пример на заданную тему.
Пропорциональные отрезки
Отрезки AB и CD пропорциональны отрезкам AB1 и CD1, если:
Отношением отрезков AB и CD называется отношение их длин, т.е. \( \frac
Пример 1. На рисунке 1 заданы отрезки \( \small AB, \; CD, \; A_1B_1,\; C_1D_1. \) Определить, являются ли отрезки \( \small AB \) и \( \small CD \) пропорциональны отрезкам \( \small A_1B_1 \) и \( \small C_1D_1 \).
Решение. Запишем длины отрезков:
Отношение отрезков и
равно:
Отношение отрезков и
равно:
значит отрезки и
пропорциональны отрезкам
и
.
Легко убедится, что выполяется также равенство (2) (это следует также из правила перекрестного умножения):
Пример 2. На рисунке 2 заданы отрезки \( \small AB, \; CD, \; A_1B_1,\; C_1D_1. \) Определить, являются ли отрезки \( \small AB \) и \( \small CD \) пропорциональны отрезкам \( \small A_1B_1 \) и \( \small C_1D_1 \).
Решение. Запишем длины отрезков:
Следовательно отрезки и
не пропорциональны отрезкам
и
.
Математика
Четыре отрезка называются пропорциональными, если они такой величины, что образуют пропорцию. В этом случае отношение двух отрезков по длине равно отношению других двух отрезков.
Так четыре отрезка AB, CD, EF, GH (черт. 144) будут пропорциональными, если они удовлетворяют пропорции:
В этой пропорции под отрезками AB, CD подразумевают их длины. Так как длина отрезков может быть выражена числом, которое выражает отношение длины отрезка к длине, принятой за единицу, то под отрезками AB, CD, EF, GH можно подразумевать и сами числа.
На этом основании пропорция из отрезков обладает всеми свойствами пропорции, составленной из чисел.
Члены пропорции можно переставлять, перемножать и т. д.
Таким образом из пропорции (1) вытекает равенство
AB/EF = CD/GH, GH/CD = EF/AB и т. д.
Таким образом отрезок GH будет четвертым пропорциональным отрезкам EF, CD, AB. Отрезок AB четвертым пропорциональным отрезкам CD, EF, GH.
Теоремы о пропорциональных отрезках
В основу всех предположений о пропорциональных отрезках может быть положена следующая теорема.
Теорема 83. Если от вершины угла по стороне его отложим несколько равных частей и проведем через точки деления параллельные прямые до другой стороны угла, на последней отложатся тоже равные части.
Дан угол ABC (черт. 145), на одной стороне которого отложены равные части BD, DE, EF, FG и проведены параллельные линии DD’, EE’, FF’, GG’, то есть
BD = DE = EF = FG
DD’ || EE’ || FF’ || GG’
Требуется доказать, что
Доказательство. Проведем отрезок D’M параллельно лучу AB. Треугольники BDD’ и D’ME’ равны, ибо D’M = BD (потому что D’M = DE как части параллельных между параллельными, а DE = BD по условию, следовательно, D’M = BD).
∠B = ∠MD’E’ (как соответствующие углы при пересечении параллельных прямых BD и D’M третьей прямой BC).
∠BDD’ = ∠D’ME’ (ибо ∠BDD’ = ∠BEE’, а ∠BEE’ = ∠D’ME’). Следовательно, BD’ = D’E’.
Подобным же образом, проведя отрезок E’N параллельно AB, можно доказать, что D’E’ = E’F’. Следовательно,
Теорема 84. Если на одной прямой отложим несколько равных частей и проведем параллельные прямые до пересечения с другой прямой, на последней отложатся тоже равные части.
Дано. На прямой AB отложены равные части EF, FG и проведены параллельные прямые EE’, FF’, GG’ (черт. 146).
Требуется доказать, что E’F’ = F’G’ и т. д.
Доказательство. Проведем отрезки E’M, F’N параллельно прямой AB, тогда треугольники E’MF’ и F’NG’ равны, ибо E’M = F’N (E’M = EF, F’N = FG и так как EF = FG, то E’M = F’N).
∠ME’F’ = ∠NF’G’ как соответственные.
∠E’MF’ = ∠F’NG’ как углы с параллельными сторонами.
Теорема 85. Прямая, параллельная одной из сторон треугольника, делит две другие его стороны на части пропорциональные.
Дано. В треугольнике ABC прямая DE || BC (черт. 147).
Требуется доказать, что
Доказательство. Здесь могут быть два случая:
1) когда отрезки AD и DB соизмеримы и
2) когда они несоизмеримы.
Первый случай. Отрезки AD и DB соизмеримы. Положим, что их общая мера укладывается m раз в отрезке AD и n раз в отрезке DB. Разделив AD на m и DB на n равных частей и проведя из точек деления прямые, параллельные BC, мы разделим также и отрезок AE на m, а EC на n равных частей (теорема 83).
Рядом с отношением
имеет место отношение
Докажем, что в этом случае не имеет мета ни неравенство
Чтобы имело место равенство, нужно второе отношение увеличить. Для этого нужно знаменатель этого отношения уменьшить, т. е. EC заменить меньшим отрезком EG. Тогда будет иметь место пропорция
Разделим отрезок AE на равные части, которые были бы меньше GC, и станем их откладывать от точки A по отрезку AC; тогда одна из частей упадет в точку α между G и C. Проведем из точки α прямую αβ параллельную BC, тогда отрезок AE будет соизмерим с E α и будет иметь место пропорция
Разделив отношение (1) на (2), получим равенство
Это равенство несообразно, ибо отношение D β /DB α /EG > 1, следовательно, неравенство (a) не имеет места, ибо ведет к несообразному заключению.
Точно также можно доказать, что не имеет места и неравенство