Что такое перемещение при равномерном движении
Кинематика. Равномерное движение.
Если тело за любые равные промежутки времени проходит равные пути, его движение называется равномерным.
Равномерное движение встречается довольно редко. Например, почти равномерно движется Земля вокруг Солнца, проходя за год один оборот.
При равномерноем движении скорость не изменяется:
Равномерное движение происходит как по прямолинейной, так и по криволинейной траектории.
Равномерное движение тела описывается уравнением:
где s – путь, пройденный телом от некоторой точки, принятой за начало отсчета, t – время тела в пути, s0 – значение s в начальный момент времени t = 0.
Прямолинейным равномерным движением называют движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость прямолинейного равномерного движения – величина постоянная. Определяется как отношение перемещения точки к промежутку времени, в течение которого это перемещение произошло:
Модуль этой скорости – это перемещение тела, совершаемое за единицу времени.
Скоростью равномерного прямолинейного движении называют величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка:
Перемещение при равномерном прямолинейном движении (по оси Х) можно рассчитать по формуле:
где υx – проекция скорости на ось Х, откуда закон равномерного прямолинейного движения будет иметь вид:
Перемещение при прямолинейном равномерном движении
Всего получено оценок: 105.
Всего получено оценок: 105.
Наиболее простым видом движения является прямолинейное равномерное движение. Рассмотрим перемещение при таком движении.
Формула перемещения
Рис. 1. Прямолинейное равномерное движение.
А по определению, вектор перемещения равен разнице между начальной и текущей координатами материальной точки:
Подставляя значение вектора перемещения из одной формулы в другую, можно получить зависимость, описывающую текущую координату материальной точки в зависимости от времени:
Это и есть формула перемещения при прямолинейном равномерном движении.
Эту формулу можно представить и в векторном виде:
$$\overrightarrow x=\overrightarrow
Движение на плоскости или в пространстве
При движении по плоскости или в трехмерном пространстве следует использовать векторную форму представленной формулы. Векторы проецируются на оси координат, и дальше проводятся расчеты для каждой координаты вектора перемещения.
График перемещения
Во многих случаях движение тел удобно представлять в виде графика. По оси абсцисс в этом случае откладывается время в пути, а по оси ординат – значение координаты. Для построения графика используется полученная формула.
Рис. 2. График координаты от времени.
Исходя из вида формулы, а также построив несколько различных графиков, можно отметить важные особенности графика перемещения при равномерном прямолинейном движении:
График перемещения и траектория движения – это не одно и то же! График показывает зависимость координаты от времени по одной из осей. Траектория движения же показывает путь, который прошла точка вдоль прямой, на плоскости или в пространстве. Таким образом, если материальная точка движется на плоскости – для описания ее перемещения требуется два графика, а если в пространстве – то три, по количеству координатных осей.
График скорости
Рис. 3. График постоянной скорости горизонтальная прямая.
Из этого же графика ясно, что значение перемещения при данной скорости равно площади прямоугольника под прямой. Высота прямоугольника равна модулю скорости. Ширина прямоугольника равна времени пути.
Что мы узнали?
Равномерное прямолинейное движение
1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.
Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.
2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.
Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.
Если за время \( t \) тело совершило перемещение \( \vec \) , то скорость его движения \( \vec >
3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.
Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.
4. Зависимость координаты от времени можно представить графически.
Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: \( x \) = 4 м/с · \( t \) . Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).
Для того чтобы её построить, необходимо иметь две точки: одна из них \( t \) = 0 и \( x \) = 0, а другая \( t \) = 1 с, \( x \) = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.
Если в начальный момент времени координата тела \( x_0 \) = 2 м, а проекция его скорости \( v_x \) = 4 м/с, то уравнение движения имеет вид: \( x \) = 2 м + 4 м/с · \( t \) . Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой \( t \) = 0, \( x \) = 2 м (рис. 14).
В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \( x \) = 2 м – 4 м/с · \( t \) . График зависимости координаты такого движения от времени представлен на рисунке 15.
Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.
График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.
5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.
Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.
При решении задачи целесообразно придерживаться следующей последовательности действий:
Применим эту последовательность действий к приведённой выше задаче.
Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь
Система отсчёта связана с Землёй, ось \( Ox \) направлена в сторону движения первого тела, начало отсчёта координаты — т. \( O \) — положение первого тела в начальный момент времени.
Начальные условия: \( t \) = 0; \( x_ <01>\) = 0; \( x_ <02>\) = 270.
Уравнения для каждого тела с учётом начальных условий: \( x_1=v_1t \) ; \( x_2=l-v_2t \) . В месте встречи тел \( x_1=x_2 \) ; следовательно: \( v_1t=l-v_2t \) . Откуда \( t=\frac
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?
1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с
2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?
1) 0,25 м
2) 6 м
3) 10 м
4) 150 м
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)
5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен
1) 20 м
2) 40 м
3) 80 м
4) 160 м
6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен
1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с
7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости \( v_1 \) , \( v_2 \) и \( v_3 \) движения этих тел.
8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?
9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?
1) 9,8 м
2) 6 м
3) 4 м
4) 2 м
10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид
1) \( x=1t \) (м)
2) \( x=2+3t \) (м)
3) \( x=2-1t \) (м)
4) \( x=4+2t \) (м)
11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.
ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость
ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит
12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.
1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось
Часть 2
13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?
Перемещение при прямолинейном равномерном движении
Урок 4. Физика 9 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Перемещение при прямолинейном равномерном движении»
Мы уже знаем, что для определения положение тела в любой момент времени, необходимо знать вектор перемещения, так как именно он связан с изменением координат движущегося тела. Проекции вектора перемещения тела на координатные оси просто равны изменениям его координат.
— Но как найти вектор перемещения? Что для этого нужно знать?
Ответ на этот вопрос зависит от того, какое движение совершает тело.
Рассмотрим сначала самый простой вид движения — равномерное прямолинейное движение (сокращённо РПД).
Из седьмого класса вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным.
— А что означают слова «за любые равные промежутки времени»?
Ответим на этот вопрос, проведя следующий опыт. Возьмём вертикальную трубку, заполненную вязкой жидкостью, например, густым сахарным сиропом, и проследим за падением маленького металлического шарика в ней. Будем отмечать положение шарика через равные промежутки времени, например, через каждые 5 секунд.
Не трудно заметить, что за равные промежутки времени, шарик совершает одинаковые перемещения.
Уменьшим промежутки времени, например, в два раза.
Как видим, во столько же раз уменьшаются и перемещения шарика, но по-прежнему за равные промежутки времени они будут равны.
Таким образом, равномерное прямолинейное движение — это такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.
Конечно же в реальной жизни очень трудно создать такие условия, чтобы тело двигалось равномерно в течение длительного промежутка времени. Поэтому равномерное движение является моделью реального движения тел.
Вы знаете, что в случае прямолинейного движения тела в одном направлении перемещение тела непрерывно возрастает. Чтобы найти перемещение за некоторый промежуток времени, надо знать, как быстро оно возрастает. Быстроту этого возрастания характеризует скорость.
Скорость равномерного прямолинейного движения — это векторная физическая величина, равная отношению перемещения к промежутку времени, за который оно совершено.
Скорость равномерного прямолинейного движения постоянна. Иными словами, с течением времени не изменяется ни её модуль, ни её направление.
Единицей скорости в СИ является метр в секунду. Скорость показывает, какое перемещение тело совершает в единицу времени.
Так как векторная величина имеет не только числовое значение, но и направление, то по формулам, записанным в векторном виде, вычисления вести нельзя. Поэтому при вычислениях пользуются формулами, в которые входят не векторы, а их проекции на оси координат:
На прошлых уроках мы с вами говорили о том, что основной задачей механики является определение координаты тела в любой момент времени. Получим формулу для вычисления координаты тела для равномерного прямолинейного движения. Для этого рассмотрим равномерное движение лодки по прямолинейному участку реки.
Для описания движения лодки воспользуемся одной координатной осью, например Ox, выбрав в качестве начала отсчёта дерево на берегу реки. Лодку будем рассматривать как материальную точку.
Полученное уравнение называется кинематическим законом движения или уравнением движения.
Из него следует, что для определения координаты движущегося тела в любой момент времени, необходимо знать его начальную координату и проекцию скорости движения на ось.
Необходимо помнить, что в формуле υх — это проекция вектора скорости. А она, как всякая проекция вектора, может быть больше или меньше нуля. Если направление движения совпадает с направлением оси Ох, то проекция скорости положительна. Если же направление вектора скорости противоположно направлению оси, то его проекция на эту ось отрицательна. Координата начального положения тела тоже может быть больше или меньше нуля, так как в момент начала наблюдения тело может находиться и по одну, и по другую стороны от начала отсчёта.
Для большей наглядности, движение можно описывать с помощью графиков. Рассмотрим, как строятся такие графики на конкретном примере. Саша и Маша идут навстречу друг к другу. Они движутся равномерно и прямолинейно. Модуль скорости Саши равен двум метрам в секунду, а Маши — одному метру в секунду.
Выберем координатную ось Ox, направив её в сторону движения Саши. Будем считать, что в момент начала наблюдения координата Саши равнялась 2 метрам, а Маши — 8 метрам. Построим графики зависимости проекции скорости движения Саши и Маши от времени. Для этого сначала найдём проекции их скоростей на координатную ось. При этом учтём, что направление вектора скорости Саши совпадает с направлением оси Ox, а Маши — нет. Так как скорости движения детей не меняются со временем, то графиками зависимости проекций их скоростей от времени будут прямые линии, параллельные оси времени.
По графику скорости можно определить перемещение тела за данный промежуток времени: при прямолинейном равномерном движении тела проекция вектора его перемещения численно равна площади прямоугольника, заключённого между графиком скорости, осью времени и перпендикулярами к этой оси, восставленными из точек, соответствующих моментам начала и конца наблюдения.
Теперь построим график проекции перемещения. Согласно формуле, проекция перемещения линейно зависит от времени, то есть графиком проекции перемещения является прямая линия. А направление и угол наклона графика к оси времени будет зависеть от проекции вектора скорости на координатную ось.
По графику зависимости проекции перемещения тела от времени можно определить проекцию скорости тела, которая будет равна тангенсу угла наклона графика к оси времени.
Теперь разберёмся с график пути. Мы знаем, что при равномерном прямолинейном движении путь равен модулю перемещения. Поэтому график пути совпадает с графиком проекции перемещения, если проекция скорости положительна. И является «зеркальным отражением» от оси времени графика проекции перемещения, если проекция скорости отрицательна.
Ну и наконец рассмотрим график зависимости координаты тела от времени. Его также называют графиком движения. Для того, чтобы построить такой график, необходимо знать уравнение движения тела. Составим такие уравнения для Саши и Маши:
Из уравнений видно, что координаты Саши и Маши, при их равномерном прямолинейном движении, линейно зависят от времени. Построим графики координат, помня о том, что для построения прямой достаточно найти координаты двух любых её точек.
Для прямолинейного движения тела графики движения дают полное решение задачи механики, так как они позволяют найти координату тела в любой момент времени, в том числе и в моменты времени, предшествовавшие начальному моменту.
Так, например, продолжив график Саши в сторону, противоположную направлению его движения, увидим, что за секунду до начала наблюдения Саша находился в точке начала отсчёта координаты (конечно это будет справедливо только в том случае, если Саша двигался с такой же скоростью и до начала наблюдения).
По виду графиков движения можно судить и о скорости тел: чем круче график (то есть чем больше его угол наклона к оси времени), тем больше скорость движения.
Из графиков движения можно определить и перемещение тела за любой промежуток времени. Видно, например, что Саша, за первые 3 секунды движения совершил перемещение в положительном направлении оси Ох, по модулю равное 6 метрам.
А по точке пересечения графиков можно определить момент и координату встречи Саши и Маши, опустив перпендикуляры на соответствующие координатные оси.
Две лодки плывут навстречу друг другу равномерно и прямолинейно. Скорость первой лодки 8 м/с, второй — 5 м/с. Определите время и координату их места встречи, если в начальный момент времени расстояние между лодками равно 130 метрам.