Что такое площадь физика

Площадь: определение, разновидности, единицы измерения

Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физика

Площадь: определение, разновидности, единицы измерения.

Площадь (математический знак S)— величина, измеряющая размер поверхности. Наиболее распространенные единицы измерения площади это: квадратный метр (м2), квадратный сантиметр (см2), квадратный миллиметр (мм2), квадратный километр (км2), ар (а), гектар (га).

Площадь имеет следующие свойства:

1. положительность (число, получившееся в результате измерения площади не должно быть равно отрицательному числу);

2. нормировка (площадь измеряется в определенных единицах измерения);

3. равные фигуры имеют равную площадь;

4. площадь объединения двух фигур без общих внутренних точек равна сумме площадей.

Необходимость в измерении площади присутствует во всех сферах жизнедеятельности человека. Наиболее часто при этом пользуются понятиями: площадь фигуры и площадь поверхности.

Площадь фигуры (математический знак S)— геометрическое понятие, размер плоской фигуры. В простейшем случае, когда фигуру можно разбить на конечное множество квадратов, со стороной, равной одной единице измерения площади, площадь равна числу квадратов.

Площадь поверхности — числовая характеристика поверхности. В простом случае сумма всех площадей плоских фигур, представляющих собой грани пространственной фигуры.

Для записи результатов измерения обычно используют следующие единицы измерения площади: квадратный метр (м2), квадратный сантиметр (с м2), квадратный миллиметр (мм2)

Одной из разновидностей измерения площади поверхности является площадь участка – числовая характеристика земельного участка. Для обозначения результатов ее измерения используются такие единицы, как ар (а) и гектар (га).

Способ измерения площади:

Основой для измерения площади является единичный квадрат.

Единичный квадрат – это квадрат, со стороной, равной 1 единице измерения. Площадь единичного квадрата равна одной единице измерения площади, возведенной в квадрат (вторую степень).

Например. Возьмем квадрат со стороной, равной единице измерения 1 метр (м) и измерим его площадь. Для этого вычислим произведение двух его сторон, образующих между собой угол. То есть умножить 1 метр на 1 метр (1м х 1м). Получаем 1 квадратный метр (м2). Таким образом, площадь квадрата со стороной 1 метр равна 1 квадратный метр. Также, можно это перевести и в прочие единицы измерения: сантиметры, миллиметры, километры. Тогда площадь будет равна квадратным сантиметрам (см2),квадратных миллиметров (мм2), 0, 000001 квадратным километрам (км2).

Площадь фигуры (поверхности, участка) равна сумме единичных квадратов и их частей. Для простых фигур она равна только сумме единичных квадратов. Единица измерения площади при записи в этом случае тоже возводится в квадрат.

Единицы измерения площади:

Наиболее распространенные единицы измерения площади это: квадратный метр (м2), квадратный сантиметр (см2), квадратный миллиметр (мм2), квадратный километр (км2), ар (а), гектар (га).

Квадратный метр (м²) — единица измерения площади. 1 м² равен площади квадрата со стороной в 1 метр. Также эта единица измерения равна 0,000 001 квадратных километров (км²),квадратных сантиметров (см²), 0,000 1 гектара, 0,01 ара

Квадратный метр – одна из единиц системы СИ. Эта система носит полное название Международной десятичной системы единиц, но наиболее известна как система СИ или Метрическая система единиц измерения. Она основана на использовании метра и грамма, и является международно-признанной системой. Метрические единицы измерения широко используются по всему миру, как в научных целях, так и в повседневной жизни.

Однако, помимо квадратного метра, широко распространены и другие единицы измерения площади. Такие как:

Квадратный сантиметр (см2) — единица измерения пощади, равная в системе СИ 0,0001 квадратного метра (м2). В школьной практике для объяснения величины сантиметра используют такие подручные приблизительные меры, как две тетрадных клеточки, потому квадратный сантиметр может быть с легкостью изображен как совокупность 4 тетрадных клеток.

Квадратный миллиметр (от милли… и метр, мм2) — единица измерения площади равная 0, 000001 квадратным метрам (м2) или 0, 0001 квадратному сантиметру (см2). Во многих странах на чертежах, в том числе и в России, миллиметр является единицей измерения длины по умолчанию: если размеры указаны без единиц измерения, то это размеры в миллиметрах.

Квадратный километр (км²,) — единица измерения площади, кратная квадратному метру и равная 1.000.000 квадратным метрам (м2). Также он равен площади квадрата со стороной в 1 километр, 100 гектарам.

Ар (а, от лат. area — площадь, поверхность) — единица измерения площади в метрической системе (системе СИ), равная площади квадрата со стороной 10 м, то есть 100 квадратных метров (м2). Известна также как «сотка» или 0, 01 гектара. Ар – одна из основных единиц измерения площади небольших земельных участков.

В России гектар является основной единицей измерения площади сельскохозяйственной земли. На территории РСФСР (и впоследствии СССР) единица «гектар» была введена в практику после Октябрьской революции, вместо десятины. Для перевода использовалось соотношение 1 га = 11/12 десятины.

Источник

Порядок величины (площадь)

Единицей площади в Международной системе единиц является 1 квадратный метр (обозначение единицы величины — м², буквенное обозначение величины в уравнениях и формулах — A), производный от основной единицы — метра.

Также используются производные единицы площади:

1 мм² (квадратный миллиметр) = 0,000001 м² (1 000 000 мм² = 1 м²)

1 см² (квадратный сантиметр) = 0,0001 м² (10 000 см² = 1 м²)

* 1 га (гектар) = 100 а = 10 000 м²

* 1 км² (квадратный километр) = 100 га = 1 000 000 м²

Связанные понятия

Международная система единиц (СИ) определяет набор из семи основных единиц, из которых формируются все другие единицы измерения. Эти другие единицы называются производными единицами СИ и также считаются частью стандарта.

Упоминания в литературе

Связанные понятия (продолжение)

В метрологии различают понятия размерность физической величины и единица физической величины. Размерность физической величины определяется используемой системой физических величин, которая представляет собой совокупность физических величин, связанных между собой зависимостями, и в которой несколько величин выбраны в качестве основных. Единица физической величины — это такая физическая величина, которой по соглашению присвоено числовое значение, равное единице. Системой единиц физических величин называют.

Номиналы промышленно выпускаемых электронных компонентов (сопротивление резисторов, ёмкость конденсаторов, индуктивность небольших катушек индуктивности) не являются произвольными. Существуют установленные стандартом специальные ряды номиналов, представляющие собой множества значений от 1 до 10. Номинал детали определённого ряда является некоторым значением из соответствующего ряда, умноженным на произвольный десятичный множитель (10 в целой степени).

Источник

Площадь фигуры

Пло́щадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Содержание

Об определении

Формальное введение понятия площадь и объём можно найти в статье мера Жордана, здесь мы приводим лишь намётки определения с комментариями.

Площадь — это вещественнозначная функция, определённая на определённом классе фигур евклидовой плоскости, такая что:

Определённый класс должен быть замкнут относительно пересечения и объединения, а также относительно движений плоскости и включать в себя все многоугольники. Из этих аксиом следует монотонность площади, то есть

Чаще всего за «определённый класс» берут множество квадрируемых фигур. Фигура Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физиканазывается квадрируемой, если для любого Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физика0″ border=»0″ /> существует пара многоугольников Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физикаи Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физика, такие что Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физикаи Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физика, где Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физикаобозначает площадь Что такое площадь физика. Смотреть фото Что такое площадь физика. Смотреть картинку Что такое площадь физика. Картинка про Что такое площадь физика. Фото Что такое площадь физика.

Связанные определения

Комментарии

На самом деле, есть довольно неестественный и неоднозначный способ определить площадь для всех ограниченных подмножеств плоскости. На множестве всех ограниченных подмножеств плоскости существуют различные функции площади, т. е. не равные функции, удовлетворяющие вышеприведённым аксиомам, а множество квадрируемых фигур является максимальным множеством фигур, на которых функционал площади определяется однозначно.

То же самое можно сделать для длины на прямой, но нельзя для объёма в евклидовом пространстве и также нельзя для площади на единичной сфере в евклидовом пространстве, (смотри соответственно парадокс Банаха — Тарского и парадокс Хаусдорфа).

Источник

Площадь

Что такое площадь

Понятие площади фигур рассматривается одним из разделов математики — конкретно, геометрией. Результат решения задач с нахождением площади геометрических фигур может использоваться для решения математических задач, в быту, в производстве.

Площадь фигуры — численная характеристика, которая передает информацию о размере геометрической фигуры.

Фигура, в математическом мире определяемая как множество точек на плоскости, должна быть ограничена со всех сторон, чтобы иметь понятие площади. Если фигура располагается на одной плоскости, она не имеет объема, а только площадь.

В самом простом случае, площадь фигуры можно посчитать по количеству клеток, которые она занимает. Подобным способом можно легко посчитать площадь квадрата, прямоугольника или прямоугольного равнобедренного треугольника.

Площадь в геометрии обозначается знаком S, от английского square — площадь.

Как математическая характеристика, площадь имеет четыре характеристики:

Единицы измерения площади

Площадь фигуры может измеряться в разных единицах в зависимости от поверхности, на которой располагается. Основной системой измерения считается Международная система единиц СИ.

Площадь измеряется в единицах измерения в квадрате:

В Древней Руси употребляли такие величины, как квадратная верста, десятина, квадратный сажень.

В античных источниках единицей измерения площади были актус, арура, центурия, югер.

Формула нахождения площади в математике

Существует множество формул нахождения площади простых геометрических фигур, которые зависят, в основном, от количества углов, сторон и их соотношений.

Площадь прямоугольника

Прямоугольником является геометрическая фигура, все углы которой равны 90°. При этом таких углов должно быть, как минимум три, а четвертый будет равен 90° в силу закона о сумме углов четырехугольника в евклидовой геометрии.

Вычисление площади прямоугольника будет происходить через умножение сторон:

где a и b являются сторонами прямоугольника.

Площадь квадрата

Квадратом является прямоугольник с равными сторонами. Все его углы равны 90°. Площадь квадрата можно найти сразу двумя способами:

По длине стороны:

Через диагонали:

где a — длина сторон квадрата;

d — длина диагоналей квадрата.

Площадь круга

Кругом является часть плоскости, которая лежит внутри окружности. Круг не имеет ни одного угла, а точки его окружности находятся на равном удалении от центра.

Площадь круга можно найти двумя способами:

Через радиус:

где π — постоянная Пи, равна 3,14.

Радиус, упоминаемый в формуле, является линией или отрезком, соединяющим центр и любую из точек окружности.

Через диаметр:

где π — постоянная Пи, равна 3,14.

Диаметр является отрезком, соединяющим две точки окружности и проходящим через центр. Он включает в себя два противоположно направленных радиуса.

Площадь эллипса

Эллипс является частным случаем окружности. Он, так же, как и круг, не имеет ни одного угла, но при этом точки окружности находятся на разном удалении от центра.

Найти площадь эллипса можно только одним способом: через произведение длин большой и малой полуосей эллипса и числа пи.

Площадь эллипса находится через произведение длин большой и малой полуосей эллипса и числа пи:

Площадь параллелограмма

Параллелограмм является геометрической фигурой с 4 углами и 4 сторонами, однако он отличается от прямоугольника по строению. Его противолежащие стороны попарно параллельны, а углы равны зеркально противолежащим.

Частными случаями параллелограмма являются квадрат, прямоугольник и ромб.

Найти площадь параллелограмма можно тремя способами:

Через сторону и высоту:

где a — сторона, к которой проведена высота,

h — высота непосредственно.

Через две стороны и величину угла между ними:

Через диагонали и угол между ними:

S = 1 2 × d 1 × d 2 × sin y

где d 1 и d 2 — это диагонали параллелограмма,

y — угол между ними.

Площадь ромба

Ромб, как частный случай параллелограмма, имеет те же свойства, кроме того, что все его стороны равны.

Площадь ромба также можно найти тремя способами:

По длине стороны и высоте:

Формула площади ромба по стороне и высоте выглядит так же, как и площадь параллелограмма по таким же характеристикам, с условием, что все высоты ромба будут равны:

По длине стороны и углу:

Формула площади ромба через длину сторон и углу между ними похожа на соответствующую формулу площади параллелограмма с условием того, что стороны равны, а значит, их перемножение можно заменить квадратом величины стороны:

По длине его диагоналей:

Площадь трапеции

Трапеция отличается от всех предыдущих фигур тем, что только две ее стороны, боковые, могут быть равны между собой. При этом они не параллельны. Две другие стороны параллельны, но не равны. Сумма углов трапеции равна 360°.

Площадь трапеции можно найти двумя способами:

По формуле Герона:

По длине основ и высоте:

Площадь треугольника

Треугольник является геометрической фигурой с тремя сторонами и суммой углов, равной 180°. По величине углов треугольники делятся на острые, тупые и прямоугольные. По числу равных сторон треугольники делятся на разносторонние, равносторонние и равнобедренные.

Площадь треугольника можно найти множеством способов:

По гипотенузе и острому углу:

a — любой из прилежащих острых углов.

Через сторону и высоту:

Через три стороны:

где р — полупериметр.

Через две стороны и угол между ними:

S = 1 2 × a × b × sin y

Через три стороны и радиус описанной окружности:

Через три стороны и радиус вписанной окружности:

где р — полупериметр.

Пояснения на примерах

Стены класса равны 7 и 5 метрам. Чему будет равна площадь пола в данной комнате?

Решение: S = 7 × 5 = 35

Ткань летучего змея порвалась. Вася решил сделать новую форму. Он посчитал, что длина жердей летучего змея равна 15 и 23 см. Форму какой площади нужно взять Васе с учетом того, что для припусков для пришивания нужно взять еще 2 см?

Равнобедренный треугольник имеет основание 4 дм и высоту 7 дм. Сколько будет его площадь?

Источник

Физика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Измерить – значит, сравнить

На помощь человеку приходят числа, используя которые можно было сравнить предметы по величине. Так в одном известном мультфильме длину удава измеряли в «попугаях», сравнивая величину удава с длиной попугая.

Из мультфильма «38 попугаев».

Длина удава 38 «попугаев». Понятно, что удав в 38 раз длиннее попугая. Но попугаи бывают разными. Если взять другого попугая, тот же удав будет, например, 45 «попугаев». Что делать?

Нужно найти тело, принимаемое за единицу измерения, с которой сравниваются другие тела.

В практической деятельности человеку приходится часто измерять длину, массу и время. В разных странах вводились разные единицы измерения этих величин. Существовали такие единицы, как «лошадиная сила», локоть, бочка. Но ведь и локоть, и бочка могут быть разными, поэтому о точности выполнения работы говорилось приблизительно.

Сравнивать нужно только однородные физические величины. Длину тела нужно сравнивать с длиной другого тела, а массу тела – только с массой другого тела, принятого за единицу измерения. Так массу удава из мультфильма можно было сравнить с массой обезьянки. Удав имеет массу 195 «обезьянок». Что бы это значило?

Выход был найден, когда ввели систему единиц СИ. Чтобы измерить любую величину, нужно сравнить ее с однородной величиной, принятой за единицу. Как же выбирают эти единицы?

Наиболее распространено измерение длины, размеров пройденного пути, расстояния. Все эти величины измеряются в метрах. Один метр получили следующим образом. Взяли одну сорока миллионную часть меридиана, который проходит через столицу Франции – Париж. Длину этой части и приняли за 1 метр. На стержне, изготовленном из иридия и платины, нанесли два деления, расстояние между которыми равно одному метру. Такой сплав меньше всего подвержен температурному влиянию, которое может изменить длину тела. Это стержень и есть эталон длины, с которым сравнивают единицу длины во многих странах мира. Метровые линейки – это многочисленные копии эталона, которыми как раз и можно пользоваться.

Эталон длины

Первый эталон метра был изготовлен из латуни в 1795 г. С 1960 г. используется изготовленный с помощью электронных технологий эталон из сплава иридия и платины.

Существует и эталон массы, равный одному килограмму. Он также изготовлен из сплава иридия и платины.

Эталоны длины и массы хранятся в г. Севр, вблизи Парижа, где располагается Международная палата мер и весов. В 1960 году метр начали сравнивать с величинами, относящимися к разделу «Световые явления». Подробности о свете изучаются в старших классах.

Время «хранят» при помощи очень точных часов – устройств, предназначенных для измерения времени. Действие любых часов основано на повторяющихся процессах – колебаниях. Чем меньше период (время одного полного колебания), тем часы более точные.

При изучении быстро протекающих процессов требуется измерять миллиардные и еще более мелкие доли секунды. Для этого служат атомные часы.

Ученик седьмого класса, конечно же, умеет измерять длину и время, массу продуктов определяют продавцы с помощью весов.

По мере изучения физики будет идти знакомство с различными физическими величинами, способами и приборами их измерения. А сейчас надо знать:

Числа «карлики» и числа «великаны»

Солнечная система. Лапка мухи под микроскопом.

Чтобы достать до Альфа Центавры, звезды, ближайшей к Солнечной системе, надо со скоростью света (300 000 км/с) лететь четыре года. Расстояния до небесных тел огромны.

Если определить расстояние от Земли до Солнца, то оно выразится числом 150 000 000 000 м. А бывают числа с еще большим количеством нулей. Масса Земли в килограммах выражается числом с 24 нулями. Такие числа называют «гигантами». Их записывать и использовать очень неудобно.

Используя этот способ, расстояние от нашей планеты до Солнца запишется так:

150 000 000 000 = 15 ∙ 10 10 м – это промежуток называется астрономической единицей (1 а.е.) и служит единицей сравнения в Солнечной системе.

До Альфа-Центавры расстояние в 270 000 а.е., или 4 световых года. Световой год – это тоже астрономическая единица измерения расстояния. Астрономия – наука о космосе и космических телах. (1 св. год = 9,46 ∙ 10 15 м = 68 000а.е.).

Фото двойной звезды Альфа созвездия Центавра. (Источник)

Большие числа записываются при помощи кратных приставок. Например, километр – это тысяча метров, килограмм – тысяча граммов. Приставка «кило» обозначает «тысяча». Есть и другие приставки, которые обозначают умножение величины на число, кратное десяти. Примеры и форма записи даны в таблице кратных приставок.

Используя эти приставки можно записывать очень большие числа.

1 а.е. = 150 000 000 000 м = 150 ∙ 10 9 м = 150Гм;

1 св. год = 9 460 000 000 000 м = 9,46 ∙ 10 12 м = 9,46 Тм;

А теперь о числах – «карликах». Если сделать попытку измерить толщину одного листа книги, то сразу это не получится. Надо действовать по простому плану:

Получится d = 0,11 мм = 0, 00011 м. Это число очень маленькое.

Такой способ измерения малых величин называется методом рядов. Он достаточно прост.

Размеры пшена. Толщина проволоки.

Но существуют и гораздо меньшие величины. Маленькие числа, так называемые «карлики», также записывают при помощи степеней или дольных приставок. (С приставками деци, санти, милли знакомятся еще в начальной школе).

Число 0,00000625 можно записать по-разному, применяя степень:

Очень маленькие числа по-другому можно записывать, используя таблицу дольных приставок.

Большие и маленькие числа помогают человеку в различных отраслях деятельности: в науке, промышленности, медицине и т.д.

Как измерить длину. Погрешности измерений

На практике измерить длину отрезка достаточно просто:

В приведенном примере длина отрезка 9,9 см. Как точен этот результат? Он точен до 1 мм, так как на линейке нет меньших делений. Не надо путать значения слов «штрих» и «деление».

Численное значение самого маленького деления шкалы прибора называется ценой деления.

Чтобы определить цену деления прибора (например, линейки), нужно взять любые два рядом стоящие числа и их разность поделить на число делений между ними (т.е. промежутков между штрихами).

Цена деления линейки = (7 см – 6 см)/10 = 0,1 см = 1 мм.

И чтобы начать измерение, прежде всего надо найти цену деления прибора, который используется в данном случае. Любое измерение дает некоторую погрешность, зависящую от качества прибора. Поэтому ее называют погрешностью прибора.

Шкалы различных приборов. (Источник)

Известно, что измерить какую-то величину – это значит сравнить ее с эталоном. На практике пользуются не эталонами, а специальными приборами (линейка, часы и др.), которые являются копиями с эталонов, изготовленными с определенной точностью. Абсолютно точных измерений не бывает. При использовании линейки допускается погрешность отсчета, которая равна половине цены деления прибора (0,5 мм). Сумма погрешностей прибора и отсчета называется абсолютной погрешностью. Она равна цене деления прибора.

Абсолютная погрешность обозначается значком Δ (дельта). Для школьной линейки Δ = 1 мм. Δ показывает, на сколько совершается ошибка при использовании того или иного прибора. Для более точных измерений используется штангенциркуль. В устройстве штангенциркуля заложено две шкалы, неподвижная (Δ = 1 мм) и подвижная (Δ = 0,1 мм).

На практике, используя приборы, необходимо учитывать качество измерения. Величина, которая помогает это учесть, называется относительной погрешностью σ (сигма) и выражается в процентах.

σ = Δ / L ( L – измеренная величина)

Пример: Требуется замерить длину L отрезка различными приборами: 1) линейкой, 2) штангенциркулем и 3) микрометром. Длина отрезка получилась 55 мм. Какова относительная погрешность этих трех измерений?

1) Δ1 = 1 мм, L = 55 ± 1 мм, σ1 = 1 мм / 55 мм ≈ 0,018 (1,8%);

2) Δ2 = 0,1 мм, L = 55 ± 0,1 мм, σ2 = 0,1 мм / 55мм ≈ 0,0018 (0,18);

3) Δ3 = 0,01 мм, L = 55 ± 0,01 мм, σ3 = 0,01 мм / 55мм ≈ 0,00018 (0,018%).

Как видно, более точный прибор (микрометр) дает меньший процент ошибки.

Для каждого конкретного измерения в технике, практической деятельности человека и в науке существует своя точность измерения, в соответствии с которой применяются измерительные приборы.

Площадь и ее измерение

С измерением длин очень тесно связано измерение площадей. Из математики известны формулы площадей квадрата и прямоугольника. У квадрата все стороны равны, поэтому достаточно измерить одну сторону, а у прямоугольника противоположные стороны равны, поэтому надо знать длину и ширину. Площадь обозначается буквой S, и формулы для расчета площадей следующие:

Арена цирка. Круглый стол. Спил дерева.

А как определить площадь, ограниченную произвольной кривой линией? Такая площадь может быть у озера, полянки в лесу, листочка с дерева.

Существует правило нахождения площади тел произвольной формы:

Площадь больших территорий изображают в условном масштабе или фотографируют, применяют прием разбиения на квадраты и находят площадь фотографии. Используя масштаб вычисляют реальную площадь поверхности.

Довольно часто площадь приходится находить в географии. Каждое государство, область, город имеют свои площади. В строительстве – любое здание имеет площадь, которую необходимо знать строителям. В сельском хозяйстве ведется постоянный учет площадей для посевных культур.

Измерение объема. Мензурка

При измерении пространства нужно перейти к трем измерениям, так как представление о пространстве дает объем. Известны формулы объемов параллелепипеда, куба, шара, цилиндра.

Объем любого тела измеряется в кубических метрах (есть кратные и дольные единицы). Из математики известны формулы объемов:

Vпар = а ∙ в ∙ с (произведение длины, ширины и высоты),

Vш = 4/3 π ∙ R 3 (R – радиус шара).

О вычислении объемов более сложной, но правильной, формы рассказывается в старших классах. А как определить объем, например, камня, форма которого может быть самой различной? Для измерения объемов таких тел используется специальный и очень простой прибор, который называется мензурка (или измерительный цилиндр). Это стеклянный сосуд с делениями. При помощи этого цилиндра легко найти объемы сыпучих тел и жидкостей. Для этого достаточно их засыпать вещество или налить в мензурку жидкость и, зная цену деления, определить объем.

Определить объем камня или любого другого тела неправильной формы с помощью мензурки можно при условии, что тело имеет размеры, позволяющие опустить его в мензурку.

Налить в мензурку воду и зафиксировать ее объем. Прикрепить тело неправильной формы к нити. Осторожно опустить полностью в воду. Уровень воды поднимется ровно на столько, чему равен объем тела.

Пользуясь измерительным цилиндром, нельзя забывать, что это прибор, имеющий шкалу, а значит, результат получится с погрешностью.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *