подголовок болта подголовок Гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания [ГОСТ 27017-86]
Тематики
Обобщающие термины
Синонимы
Смотреть что такое «подголовок болта» в других словарях:
Подголовок болта — – гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания. [ГОСТ 27017 86] Рубрика термина: Скобяные изделия… … Энциклопедия терминов, определений и пояснений строительных материалов
Подголовок болта — 31. Подголовок болта Гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания Источник: ГОСТ 27017 86: Изделия… … Словарь-справочник терминов нормативно-технической документации
подголовок болта — гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания. (Смотри: ГОСТ 27017 86. Изделия крепежные.) Источник: Дом:… … Строительный словарь
ГОСТ 27017-86: Изделия крепежные. Термины и определения — Терминология ГОСТ 27017 86: Изделия крепежные. Термины и определения оригинал документа: 37. Буравчик Резьбовой конической конец шурупа, служащий для нарезания резьбы в деревянном или пластмассовом изделии при образовании соединения Определения… … Словарь-справочник терминов нормативно-технической документации
Скобяные изделия — Термины рубрики: Скобяные изделия Анкер Анкер винтовой Анкер гравитационный Анкер с тарельчатым полимерным дюбелем … Энциклопедия терминов, определений и пояснений строительных материалов
подголовок болта подголовок Гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания [ГОСТ 27017-86]
Тематики
Обобщающие термины
Синонимы
Смотреть что такое «подголовок болта» в других словарях:
подголовок болта — подголовок Гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания [ГОСТ 27017 86] Тематики крепежные изделия… … Справочник технического переводчика
Подголовок болта — – гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания. [ГОСТ 27017 86] Рубрика термина: Скобяные изделия… … Энциклопедия терминов, определений и пояснений строительных материалов
Подголовок болта — 31. Подголовок болта Гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания Источник: ГОСТ 27017 86: Изделия… … Словарь-справочник терминов нормативно-технической документации
подголовок болта — гладкая часть стержня болта цилиндрической, овальной или квадратной формы, непосредственно примыкающая к головке и служащая для центрирования болта или предотвращения его проворачивания. (Смотри: ГОСТ 27017 86. Изделия крепежные.) Источник: Дом:… … Строительный словарь
ГОСТ 27017-86: Изделия крепежные. Термины и определения — Терминология ГОСТ 27017 86: Изделия крепежные. Термины и определения оригинал документа: 37. Буравчик Резьбовой конической конец шурупа, служащий для нарезания резьбы в деревянном или пластмассовом изделии при образовании соединения Определения… … Словарь-справочник терминов нормативно-технической документации
Скобяные изделия — Термины рубрики: Скобяные изделия Анкер Анкер винтовой Анкер гравитационный Анкер с тарельчатым полимерным дюбелем … Энциклопедия терминов, определений и пояснений строительных материалов
Основные типы болтов, винтов, шпилек. Классификация и особенности применения
Основные типы болтов
В соответствии с ГОСТ 27017-86 «Изделия крепежные. Термины и определения» болтом называется крепежное изделие в форме стержня с наружной резьбой на одном конце, с головкой на другом, образующее соединение при помощи гайки или резьбового отверстия в одном из соединяемых изделий. Отметим, что похожее определение в стандарте получает и винт: крепежное изделие для образования соединения или фиксации, выполненное в форме стержня с наружной резьбой на одном конце и конструктивным элементом для передачи крутящего момента на другом.
Полной ясности в вопросе, чем отличается болт от винта, нет до сих пор. Например, иногда признаком болта считают неполную резьбу, хотя существуют болты и с полной резьбой. Если резьба выполнена не по всей длине болта, то диаметр гладкой части стержня примерно такой же, как и диаметр резьбы, измеренный на вершинах ее витков. Но бывают и исключения.
Иногда говорят, что болт должен обязательно иметь шестигранную головку. Но, в то же время, болтами называют изделия с полукруглой и потайной головкой. Рассмотрим наиболее популярные варианты болтов, имеющиеся в ассортименте ЦКИ.
Шестигранная головка производится в нескольких модификациях: основная, с опорным выступом, с буртом, с фланцем.
Болты с шестигранной головкой и основной резьбой разделяют на болты с полной (DIN 933) и неполной резьбой (DIN 931) и мелким и сверхмелким шагом резьбы (DIN 960 и DIN 961).
Отдельно могут быть выделены болты с шестигранной головкой с увеличенным размером под ключ для высоконагруженных предварительно напряженных резьбовых соединений стальных конструкций DIN 6914.
Болты с уменьшенным размером под ключ отличаются разнообразием исполнений.
Наряду с шестигранными головками болты могут иметь полукруглую головку:
И потайную головку:
К таким болтам устойчиво применяется определение «мебельный». Отчасти это объясняется тем, что некоторые из них широко применяются при производстве мебели. При этом усы и подголовки препятствуют проворачиванию изделия при сборке.
Примерами болтов называемых по назначению являются «откидной» и «приварной».
У откидного болта DIN 444 вместо привычной головки расположена втулка со сквозным отверстием – её еще называют кольцом. Как правило, втулка сидит на оси и болт вращается вокруг нее. Толщина кольца и длина резьбы в конструкции могут варьироваться.
Приварной болт вообще мало похож на болт. На месте головы у него расположен маленький цилиндрический выступ. Часто это изделие называют ещё шпилька приварная.
Именно он обеспечивает стыковую сварку болта и основания. Вместо цилиндра с резьбой привариваться могут и другие внешние элементы.
Под формальное наименование «болт» попадают также болты анкерные и призонные.
Анкерные болты предназначены для замуровывания в бетон. Их стержень имеет резьбу на одном конце – том, который выходит наружу. Форма другого конца может быть разной.
Его задача – обеспечить максимальное сопротивление вырыву анкера из основания. Поэтому второму концу придают расширяющуюся форму. При установке болта эта часть опускается в шурф и заливается бетоном.
Призонный болт – это болт, диаметр гладкой части стержня которого обеспечивает его установку по посадке без зазора в точно обработанное отверстие. Для этого резьбовая часть исполняется заведомо меньшего диаметра.
«Призонный» болт DIN 609 — это искаженное «прецизионный», то есть высокой точности. Также в качестве призонных применяются «Болты с шестигранной уменьшенной головкой класса точности А для отверстий из-под развертки. ГОСТ 7817-80».
Технология производства болтов
Наиболее распространенная технология производства болтов представлена на рисунке ниже.
Классификация винтов
Рассмотрим теперь винты, имеющиеся в ассортименте ЦКИ. Самая большая группа из них – винты общего назначения. Это с ними мы встречаемся ежедневно в быту и на производстве. Все они имеют стержень с полной резьбой (хотя бывают и исключения) и головки различной формы. На головках имеются шлицы или углубления под ключ разного типа.
Другая большая группа винтов – винты установочные. Название пошло от их назначения. В своем большинстве они предназначены для точной установки и фиксации деталей в механизмах. Для этого на своих концах они имеют различные выступы или углубления.
По ГОСТ 12414-94 (ISO 4753:1999): «Концы болтов, винтов и шпилек. Размеры» предусматриваются следующие концы установочных винтов:
Привод крутящего момента осуществляется следующими элементами:
В сводной таблице представлены реально существующие, наиболее распространённые сочетания головок и концов установочных винтов с указанием стандарта DIN.
Конический
Плоский
Цилиндрический
Засверленный
Прямой шлиц
Мебельные винты представлены двумя изделиями:
Группа винтов имеет головки в форме крючков и петель разного вида:
Винт-барашек DIN 316 представлен двумя модификациями, отличающимися формой крылышек. Более остроконечные относятся к т.н. «американской» форме.
Резьбонарезающий винт DIN 7516 имеет конец в виде метчика, которым он нарезает метрическую резьбу в предварительно высверленном отверстии.
Что касается головок, то их используется довольно много:
Еще один винт, самостоятельно образующий резьбу – DIN 7500 выдавливает ее в первоначально нанесенном гладком отверстии. Это удобно при установке изделий в условиях односторонне доступом и существенно увеличивает плотность соединения, особенно с металлическим листом. Его конец имеет форму трехгранного стержня с заходной частью и плавным сбегом резьбы.
Виды шпилек
Шпильки – еще одно крепёжное изделие из стержня с наружной резьбой, образующее соединение при помощи гайки или резьбового отверстия. В отличие от болта или винта шпилька не имеет головки, но зато имеет два резьбовых конца, или даже сплошную резьбу по всей длине стержня.
Шпильки широко используются при глухих посадках. Естественно, что при этом длина ввинчиваемого конца строго регламентируется. В соответствии с ГОСТ она может составлять только 1; 1,25; 2; 2,5 от диаметра резьбы. Длина второго конца в сумме с длиной безрезьбового участка может изменяться в широких пределах.
Кроме того изготавливаются шпильки с равными длинами резьбы на концах, а также со сплошной резьбой.
Шпильки по DIN 975 и DIN 976 – это наиболее распространенные варианты. По сути это просто длинные шпильки со сплошной резьбой: их длина обычно составляет 1 или 2 м (но бывают и 3 и 4 метра). Основное отличие в том, что DIN 976 может быть разной длины, а DIN 975 только 1 или 2 м. Подробнее о шпильках и их особенностях можно ознакомиться у нас в блоге. Отметим, что для удобства работы штанги в зависимости от материала и класса прочности маркируются окрашиванием торцов. Ниже приводится таблица применяемых цветов.
Стандартные болты по степени точности (качеству обработки) поверхности делят на болты: 1) нормальной точности; 2) повышенной точности; 3) грубой точности.
Резьба для стандартных болтов применяется метрическая с крупным и мелким шагом. При выборе шагов резьб предпочтение следует отдавать крупным шагам.
По ГОСТ 1759—70 для болтов, винтов, шпилек из углеродистых и легированных сталей установлены классы прочности: 3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 6.9; 8.8; 10.9; 12.9; 14.9. Первое число, умноженное на 100, определяет минимальное временное сопротивление в МПа. второе число, разделенное на 10, определяет отношение предела текучести к временному сопротивлению; произведение чисел определяет предел текучести в МПа, уменьшенный в 10 раз. Для гаек из тех же сталей установлены классы прочности; 4, 5, 6, 8, 10, 12, 14. Число, обозначающее класс прочности, умноженное на 100, дает предельное напряжение в МПа.
Для болтов, винтов и шпилек из коррозионностойких, жаропрочных, жаростойких и теплостойких сталей установлены группы, определяющие их свойства: 21, 22, 23, 24, 25, 26. Механические свойства гаек из тех же сплавов установлены по группам: 21, 23, 25, 26.
Основные типы болтов представлены на рис. 94.
На рис. 94, I показан «жесткий» болт с диаметром стержня, равным наружному диаметру резьбы. Эта форма сохранилась только для малонагруженных или коротких болтов. В ответственных случаях применяют «упругие» болты (рис. 94, II) с диаметром стержня уменьшенным по крайней мере до размера внутреннего диаметра резьбы, а то еще более до 0,8 и даже до 0,7 номинального диаметра резьбы.
Известно, что увеличение упругости болтов улучшает условия работы стяжного соединения, подвергающегося действию ударной нагрузки.
Тонкие болты менее чувствительны к перекосам, возникающим вследствие неперпендикулярности опорных поверхностей головки и гайки, а также непараллельности резьбового пояса относительно оси болта. Утонение стержня позволяет выполнять плавные переходы между стержнем болта и нарезным поясом, а также между стержнем болта и головкой с одновременным увеличением сопротивления усталости болта. Это обусловливает повышенную сопротивляемость упругих болтов циклическим нагрузкам.
На участках, примыкающих к нарезному участку и головке, болты снабжают центрирующими поясками (рис 94, II—IV). Часто пояски не делают (рис. 94, V), отчего повышается упругость болта и способность его самоустанавливаться в отверстиях деталей.
Головки болтов обычно выполняют в виде шестигранника (рис. 95, I, II). Применяют и другие формы головки: с лысками под ключ (рис. 95, III, IV), с внутренним шестигранником (рис. 95, V), с треугольными шлицами (рис. 95, VI).
Головки с внутренним шестигранником чаще всего применяют в случае «утопленной» установки (рис. 95, VII), когда габариты не позволяют использовать наружный ключ.
Важное значение для прочности болта имеет форма перехода от стержня к головке (рис. 96) и к нарезному участку. Головка должна быть присоединена к стержню галтелью (рис. 96, II) радиусом R не менее 0,2d (рис. 96, I — без галтели).
Утонение стержней болтов дает возможность применения наиболее 6лагоприятных для сопротивления усталости форм галтелей — конической (рис. 96, III) и эллиптической (рис. 96, IV) форм, а также применения разгружающих выточек (рис. 96, V—VII). Наиболее благоприятную форму сопряжения имеют головки с конической опорной поверхностью (рис. 96, VIII, IX).
Нарезные участки следует соединять со стержнем галтелью (рис. 97, I) радиусом не менее R = (d – d0)/2 (d — наружный диаметр резьбы; d0 — диаметр стержня), лучше большим радиусом, порядка R = d (рис. 97, II), конической (рис. 97, III) или эллиптической галтелью (рис. 97, IV), обеспечивающей крутой выход резьбы и плавное соединение нарезной части со стержнем.
Сопряжение со стержнем центрирующих поясков (рис. 96, VI, VII) производится галтелями такого же типа.
В случае, когда собственной податливости болта, даже уменьшенного размера (см. рис. 94, V), недостаточно для обеспечения правильной работы соединений, устанавливают элементы, создающие дополнительную податливость (рис. 98). Если позволяют осевые габариты, то увеличивают длину болта с помощью подставок под гайку (рис. 98, III), иногда с введением пружинного элемента (рис. 98, IV). Если осевые габариты ограничены, то упругие элементы развивают в радиальном направлении, применяя упругие подкладные шайбы (рис. 98, V, VI).
На рис. 98, VII показана своеобразная конструкция, обеспечивающая высокую податливость при небольших осевых и радиальных габаритах. Болт устанавливают в двух концентричных вилках. При затяжке болта наружная втулка (а) растягивается, а внутренняя (б) сжимается.
Сечения болта и втулок одинаковые. Таким образом, соединение обладаем податливостью примерно в 3 раза большей податливости самого болта.
Для правильной работы резьбового соединения необходимо, чтобы действующая на соединение сила была приложена по оси, иначе говоря, чтобы соединение не имело перекосов, а болт был разгружен от изгиба. Податливые болты сами по себе хорошо компенсируют перекосы; однако изгиб вызывает в стержне болта дополнительные напряжения. Поэтому для предупреждения перекосов в ответственных соединениях применяют специальные меры, например, используют посадку резьбовых деталей с зазором. В противоположность старым теориям, требовавшим всемерного увеличения плотности резьбы для увеличения надежности резьбового соединения, новая теория убедительно доказала преимущества свободной резьбы. Свободная резьба позволяет гайке несколько самоустанавливаться относительно нарезного конца болта, что способствует правильной работе соединения. Вместе с тем увеличенный зазор в свободной резьбе способствует более равномерному распределению нагрузки между витками, что, в свою очередь, повышает прочность соединения.
В ответственных соединениях широко используют принцип самоустанавливаемости. На рис. 99 показаны способы обеспечения самоустанавливаемости (примерно в порядке возрастающей свободы самоустанавливаемости). Эти способы следующие: кольцевые выборки в гайке и в головке болта (рис. 99, I); прокладки из мягкого металла (рис. 99, II); применение гаек со сферической опорной поверхностью (рис. 99, III); установка сферических шайб под гайку (рис. 99, IV, V).
Наибольшая свобода самоустанавливаемости обеспечивается в том случае, если сферические шайбы устанавливают и под гайку, и под головку болта (рис. 99, VI—VIII). Радиус сферы в сферических самоустанавливающихся шайбах делают равным R = (1,5—2,5)d, (где d — диаметр резьбы).
Затяжка болтов. При затяжке гайки болт должен быть надежно зафиксирован от проворачивания. При сборке в положении, когда головка болта находится внизу, необходимо, кроме того, придерживать болт от выпадения. Держать болт за головку ключом неудобно, а в некоторых случаях невозможно из-за ограниченных габаритов.
Способы фиксации болта от проворота показаны на рис. 100. Способ фиксации коническим подголовником (рис. 100, I—III), основанным на повышенном трении на конических опорных поверхностях, рекомендовать нельзя, так как фиксация получается нежесткой.
Способы жесткой фиксации показаны на рис. 100, IV—X. Шестигранные головки обычно фиксируют упором одной из граней в выступ в теле детали (рис. 100. IV, a). На цилиндрических деталях (типа фланцев) фиксация осуществляется упором в кольцевую заточку (рис. 100, IV, б). На болтах с цилиндрической головкой для этой цели снимают лыски (рис. 100, V). Некоторые головки (рис. 100, VI, VII) выполняют с фиксирующей гранью, вынесенной за пределы цилиндра головки.
На рис. 100, VIII—X показаны способы фиксации усиком, выполненным как одно целое с головкой болта; усик вводят в углубление в теле детали.
Способы фиксации болтов, приведенные на рис. 100, VI—X, значительно дороже простых способов фиксации за грань или лыску, поэтому их применяют только в специальных случаях.
Способы фиксации болтов усиками под головками (рис. 100, XI) или квадратными подголовниками (рис. 100, XII) в настоящее время не применяют из-за нетехнологичности (обработка гнезд под подголовники затруднительна).
Следует предостеречь от ошибок, нередко допускаемых в конструкции фиксирующих элементов. При любом способе фиксации нельзя допускать внецентренного приложения нагрузки к головке и ослабления головки. Примеры ошибочных конструкций показаны на рис. 101. В конструкциях на рис. 101, I—III неизбежна внецентренная нагрузка из-за асимметричной формы опорной поверхности головки. Конструкция на рис. 101, IV резко ослабляет головку болта и, кроме того, вызывает внецентренную нагрузку из-за нарушения сплошности опорной поверхности.
В конструкции, изображенной на рис. 102, фиксируется навертный конец болта. В теле болта проделаны два паза, входящие в зубцы, выполненные в отверстии притягиваемой детали. Этим способом предупреждают скручивание болта при затяжке, что особенно важно для длинных болтов. Конструкция применима только для стальных деталей.
Помимо фиксации от проворота, болты необходимо поддерживать в осевом направлении при затяжке. Осевая фиксация болта обязательна при механизированных способах сборки с затяжкой гаек гайковертами. Лучше всего предусматривать жесткую фиксацию болта в осевом направлении.
На рис. 103 показаны способы осевой фиксации болтов (на примере крепления цилиндрической детали к корпусу). В конструкции, изображенной на рис. 103, I, II, фиксацию осуществляют зегерами, введенными в кольцевую канавку в теле болта. В конструкциях, представленных на рис. 103, III, IV, фиксируют одновременно все болты зегером (рис. 103, III), установленным в корпусе, или пластиной (рис. 103, IV), которая к тому же предупреждает проворачивание болтов.
На рис. 103, V представлена конструкция, обеспечивающая осевую фиксацию и предупреждающая проворот; болт постоянно закреплен в корпусе гайкой. Аналогичный результат можно получить, применяя шпильки вместо болта (рис. 103, VI).
Стоит сказать несколько слов о монтаже зегеров в случае осевой фиксации болтов по способу, приведенному на рис. 103, I, II. На рис. 104, I—III показаны неправильные (ошибочные) способы установки зегеров; зегеры вмонтированы в выточки в теле корпуса; их установка на болт, предварительно введенный в корпус, невозможна или крайне затруднительна. Для облегчения монтажа в этом случае потребовалось бы увеличить диаметр выточки в корпусе до размера, по меньшей мере равного размеру зегера в разведенном состоянии (рис. 104, IV).
Правильные способы установки зегеров показаны на рис. 104, V, VI. Здесь выточки сделаны в притягиваемой детали; плоский торец корпуса допускает беспрепятственную установку зегера. Для обеспечения плотной притяжки детали к корпусу важно предусмотреть зазор (а) (рис. 104, V) между стенкой выточки и зегером.
При затяжке длинных болтов следует предупреждать скручивание болта моментом затяжки. Для этой цели на торце болта предусматривают устройства под ключ (рис. 105, I, II) или жестко фиксируют конец болта от проворота подкладной шайбой (а) (рис. 105, III), заходящей в пазы на конце болта и в корпусе. Другой способ фиксации показан на рис. 102.
Сила затяжки имеет большое значение для работоспособности болтового соединения. Необходимую силу затяжки определяют расчетом или экспериментально. В ответственных соединениях затяжку контролируют динамометрическим ключом или измерением упругой деформации болта (способ более точный). В последнем случае в конструкции болта должны быть предусмотрены средства, облегчающие измерение: на торце болта и на головке делают сферические выступы, позволяющие измерять деформацию болта микрометром «в обхват» (рис. 106, I), или предусматривают гнезда для закладки шариков при измерении (рис. 106, II).
На рис. 107 показан способ контроля силы затяжки с помощью сигнальной шайбы. Под гайку, между двумя шайбами, устанавливают мерную шайбу (а) из пластичного металла. Концентрично с ней устанавливают сигнальную шайбу (б). Толщина шайбы (а) больше толщины шайбы (б) на строго определенную величину s; эта величина наряду с пластическими характеристиками материала шайбы (а) определяет силу затяжки.
При затяжке мерная шайба сплющивается. Пока зазор не выбран, сигнальная шайба (б) свободно проворачивается. Затяжку прекращают в тот момент, когда шайба (б) перестает проворачиваться от руки; это свидетельствует о том, что зазор s выбран и затяжка осуществлена необходимой силой.
На рис. 108 и 109 показаны некоторые типы нестандартных и специальных болтов.
Ввертные болты. Эти болты по конструкции весьма близки к болтам с навертными гайками, хотя функционально как крепежные элементы они коренным образом отличаются от последних.
Большинство типов болтов, изображенных на рис. 108, 109, можно использовать в качестве ввертных болтов.
На рис. 110, I доказан жесткий ввертный болт с шестигранной головкой, на рис. 110, II—III — упругие болты; на рис. 110, IV — болт, завертываемый в футорку (случай установки в корпус из легких сплавов).
Основные типы футорок (нарезных втулок) и способы их установки в корпус показаны на рис. 111. Футорки изготовляют из стали (реже из бронзы) и завертывают по посадке с натягом, чаще всего «солдатиками».
Для обеспечения плотного прилегания притягиваемой детали привалочную поверхность обрабатывают начисто после установки футорок (рис. 111, I). Технологичнее способ, при котором футорки устанавливают с занижением по отношению к предварительно обработанной поверхности корпуса (рис. 111, II—VI). Футорки завертывают до упора в днище отверстия (рис. 111, I); в последние нитки резьбы отверстия (рис. 111, II); в буртик (рис. 111, III) или в гладкий поясок на наружном торце футорки (рис. 111, IV).
На рис. 111, V показана конструкция футорки с уменьшенным «воротником», позволяющая получить равномерное распределение нагрузки по виткам резьбы. На рис. 111, VI представлена конструкция футорки, завертываемой с противоположного конца отверстия (случай сквозного отверстия).
На рис. 112 приведена самоврезающаяся футорка, применяемая для установки в корпуса из мягких металлов и пластиков. На наружной поверхности футорки нарезан поясок мелких продольных шлицев (а) и несколько кольцевых гребешков (б) треугольного профиля. Прорезные концы футорки подгибают к центру, после чего футорку калят. Футорку устанавливают в корпус так, чтобы продольные шлицы врезались в стенки гнезда. При завертывании нарезной конец болта распирает концы футорки. Кольцевые выступы при этом «впиваются» в стенки гнезда, обеспечивая связь между футоркой и корпусом.
При установке ввертных болтов желательно обеспечить свободу самоустанавливаемости головки относительно опорной поверхности. Это требование больше относится к ввертным болтам, чем к крепежным деталям других видов: у болтов с гайкой больше возможности самоустановки, так как болт сопрягается со стягиваемыми деталями только кольцевыми опорными поверхностями головки и гайки; у длинных шпилек задача облегчается податливостью стержня шпильки.
На рис. 113 показаны способы обеспечения самоустанавливаемости. В конструкции на рис. 113, I некоторая самоустанавливаемость головки обеспечивается разгружающей выточкой под головкой. Целесообразнее всего вводить сферические опорные поверхности (рис. 113, II—VI).
В машинах и узлах, где по требованиям к габаритам или к внешнему виду нежелательно применение выступающих головок, часто устанавливают болты с цилиндрической головкой с внутренним шестигранником или мелкими треугольными шлицами; головку утапливают в гнезде притягиваемой детали (рис. 114).
Для облегчения завертывания болтов с цилиндрической головкой на начальных стадиях, когда болт идет «из-под руки», наружную поверхность головки часто снабжают накаткой (рис. 115).
На рис. 116 изображены конструкции головок с внешними и с внутренними элементами, допускающими завертывание на выбор наружным или внутренним ключом.