Что такое полупроводники примеры

Что такое полупроводники. Объясняем простыми словами

Полупроводники — кристаллические вещества (химические элементы, соединения и сплавы), которые по способности проводить электрический ток занимают промежуточное положение между проводниками (металлами) и диэлектриками (изоляторами).

Полупроводники в нормальном состоянии проводят небольшое количество тока или не проводят вообще. Но с ростом температуры или под действием света начинают лучше пропускать электрические заряды. Также проводимость полупроводников меняется при введении примеси — этот процесс называется «легирование».

Самый известным полупроводник — кремний (Si).

Ключевые современные полупроводниковые устройства — процессоры и иные микросхемы.

Полупроводники есть как почти во всех девайсах, которыми мы ежедневно пользуемся, так и в крупной промышленной, медицинской и другой технике: смартфонах, компьютерах, телевизорах, автомобилях, аппаратах ИВЛ, космических спутниках и т. п.

Пример употребления на «Секрете»

«Из-за дефицита полупроводников Минпромторг хочет организовать в России собственное производство кристаллов для радиоэлектронной аппаратуры. Тендер на проведение опытно-конструкторских работ (ОКР) для выращивания монокристаллов арсенида галлия и германия (GaAs и GeAs) диаметром 100 и 150 мм объявили в конце сентября. На работы выделяют 1,2 млрд рублей в течение четырёх лет».

Кризис полупроводников

Вскоре после того как весной 2020 года на фоне пандемии коронавируса автопроизводители сократили заказы, во всём мире возникла нехватка чипов для электроники. Как объяснил генеральный директор научно-производственного предприятия ИТЭЛМА Евгений Горелик, цикл производства микросхем превышает шесть месяцев и предусматривает выращивание кремниевых кристаллов. Из-за специфики производства кристаллов производители запускают процесс выращивания раз в квартал, а некоторые и вовсе раз в год. При этом обычно их производят в большом количестве, а затем отправляют одну часть в корпусы, а вторую часть — на склад. За первый год пандемии запасы производителей кристаллов сократились до нуля.

Кроме коронавируса, повлиял рост спроса со стороны производителей других товаров, особенно бытовой электроники. Затем на поставках сказались ледяной шторм в Техасе, который остановил работу некоторых производителей микросхем из-за сбоев в подаче электроэнергии, и пожар на фабрике чипов компании Renesas в Японии.

Дефицит полупроводников заставил сразу несколько крупных производителей отказаться от полноценного выпуска автомобилей. Например, по этой причине General Motors пришлось на неделю приостановить производство электромобилей Chevrolet Bolt и Bolt EUV. О нехватке сообщали Ford, Honda и другие компании. В результате в России очереди на новые иномарки достигли колоссальных размеров.

Мировой дефицит добрался и до российского автопрома. Некоторое время автозаводы покрывали нехватку чипов из складских запасов, но к лету нехватка стала заметной проблемой. Завод Volkswagen в России неоднократно приостанавливал работу. АвтоВАЗ также в течение лета несколько раз прекращал производство некоторых моделей.

Из-за дефицита пришлось отложить обязательную установку системы ГЛОНАСС на выпускаемых на территории Европейского экономического союза (ЕАЭС) автомобилях.

В компании Boston Consulting Group (BCG) ожидают, что стабилизация наступит не раньше второго полугодия 2022-го.

Мнение

Миллиардер Илон Маск сравнил дефицит микрочипов, с которым столкнулся мир в 2021 году, с нехваткой туалетной бумаги, которую пережили многие страны в начале пандемии коронавируса. Несмотря на столь несерьёзную аналогию, проблема с поставками полупроводников, по признанию миллиардера, стала «самым большим вызовом для Tesla». Маск отметил, что «никогда не видел ничего подобного».

Источник

Примеры полупроводников, типы, свойства

Содержание статьи

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Самым известным полупроводником является кремний (Si). Но, помимо него, сегодня известно много природных полупроводниковых материалов: куприт (Cu2O), цинковая обманка (ZnS), галенит (PbS) и др.

Характеристика и определение полупроводников

В таблице Менделеева 25 химических элементов являются неметаллами, из которых 13 элементов обладают полупроводниковыми свойствами. Основное отличие полупроводников от других элементов заключается в том, что их электропроводность существенно возрастает при повышении температуры.

Другой особенностью полупроводника является то, что его сопротивление падает под воздействием света. Причем электропроводимость полупроводников меняется при добавлении в состав незначительного количества примеси.

Полупроводники можно встретить среди химических соединений с разнообразными кристаллическими структурами. Например, такие элементы, как кремний и селен, или двойные соединения наподобие арсенид галлия.

К полупроводниковым материалам могут относиться и многие органические соединения, например полиацетилен (СН)n. Полупроводники могут проявлять магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). При достаточном легировании некоторые становятся сверхпроводниками (SrTiO3 и GeTe).

Полупроводник можно определить как материал с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и такое определение: ширина запрещенной зоны полупроводника должна составлять от 0 до 3 эВ.

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Свойства полупроводников: примесная и собственная проводимость

Чистые полупроводниковые материалы обладают собственной проводимостью. Такие полупроводники и называются собственными, они содержат равное число дырок и свободных электронов. Собственная проводимость полупроводников возрастает при нагреве. При постоянной температуре количество рекомбинирующих электронов и дырок остается неизменным.

Наличие примесей в полупроводниках оказывает существенное влияние на их электропроводность. Это позволяет увеличить количество свободных электронов при небольшом числе дырок и наоборот. Примесные полупроводники обладают примесной проводимостью.

Примеси, которые с легкостью отдают полупроводнику электроны, называются донорными. Донорными примесями могут быть, например, фосфор и висмут.

Примеси, которые связывают электроны полупроводника и увеличивают тем самым в нем количество дырок, называют акцепторными. Акцепторные примеси: бор, галлий, индий.

Характеристики полупроводника зависят от дефектов его кристаллической структуры. Это является основной причиной необходимости выращивания в искусственных условиях предельно чистых кристаллов.

Параметрами проводимости полупроводника при этом можно управлять путем добавления легирующих присадок. Кристаллы кремния легируются фосфором, который в данном случае является донором для создания кристалла кремния n-типа. Для получения кристалла с дырочной проводимостью в полупроводник кремний добавляют акцептор бор.

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Типы полупроводников: одноэлементные и двухэлементные соединения

Самым распространенным одноэлементным полупроводником является кремний. Вместе с германием (Ge) кремний считается прототипом широкого класса полупроводников, обладающих аналогичными структурами кристалла.

Структура кристаллов Si и Ge такая же, что у алмаза и α-олова с четырехкратной координация, где каждый атом окружают 4 ближайших атома. Кристаллы с тетрадрической связью считаются базовыми для промышленности и играют ключевую роль в современной технологии.

Свойства и применение одноэлементных полупроводников:

Рост ионности элементов меняет свойства полупроводников и позволяет образовывать двухэлементные соединения:

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Примеры полупроводников

Оксиды являются прекрасными изоляторами. Примеры полупроводников этого типа – оксид меди, оксид никеля, двуокись меди, оксид кобальта, оксид европия, оксид железа, оксид цинка.

Процедура выращивания полупроводников данного типа не совсем изучена, поэтому их применение пока ограничено за исключением оксида цинка (ZnO), используемого в качестве преобразователя и в производстве клеящих лент и пластырей.

Помимо этого оксид цинка применяется в варисторах, датчиках газа, голубых светодиодах, биологических сенсорах. Используется полупроводник и для покрытия оконных стекол с целью отражения инфракрасного света, его можно встретить в ЖК-дисплеях и солнечных батареях.

Слоистые кристаллы представляют собой двойные соединения, подобные дииодиду свинца, дисульфиду молибдена и селениду галлия. Они отличаются слоистым строением кристалла, где действуют ковалентные связи значительной силы. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоев изменяется введением в состав сторонних атомов. Дисульфид молибдена (MoS2) применяется в высокочастотных выпрямителях, детекторах, транзисторах, мемристорах.

Органические полупроводники представляют собой широкий класс веществ: нафталин, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. У них есть преимущество перед неорганическими: им легко придать нужные качества. Они обладают значительной оптической нелинейностью и поэтому широко используются оптоэлектронике.

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Кристаллические аллотропы углерода тоже относятся к полупроводникам:

Примеры магнитных полупроводников: сульфид европия, селенид европия и твердые растворы. Содержание магнитных ионов влияет на магнитные свойства, антиферромагнетизм и ферромагнетизм. Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Применяются они в радиотехнических, оптических приборах, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики отличаются наличием в них электрических моментов и возникновением спонтанной поляризации. Пример полупроводников: титанат свинца (PbTiO3), теллурид германия (GeTe), титанат бария BaTiO3, теллурид олова SnTe. При низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в запоминающих, нелинейно-оптических устройствах и пьезодатчиках.

Источник

Типы, применение и примеры полупроводников

полупроводник они являются элементами, которые избирательно выполняют функцию проводников или изоляторов, в зависимости от внешних условий, которым они подвергаются, таких как температура, давление, излучение и магнитные или электрические поля..

В периодической таблице присутствуют 14 полупроводниковых элементов, среди которых кремний, германий, селен, кадмий, алюминий, галлий, бор, индий и углерод. Полупроводники представляют собой кристаллические твердые тела со средней электропроводностью, поэтому их можно использовать в качестве проводника и изолятора двойным способом..

Если они используются в качестве проводников, при определенных условиях условия допускают циркуляцию электрического тока, но только в одном направлении. Кроме того, они не имеют такой высокой проводимости, как у проводящих металлов..

Полупроводники используются в электронных приложениях, особенно для изготовления таких компонентов, как транзисторы, диоды и интегральные схемы. Они также используются в качестве аксессуаров или аксессуаров для оптических датчиков, таких как твердотельные лазеры, и некоторых силовых устройств для систем передачи электроэнергии..

В настоящее время этот тип элементов используется для технологических разработок в области телекоммуникаций, систем управления и обработки сигналов, как в быту, так и в промышленности..

тип

Существуют различные типы полупроводниковых материалов в зависимости от присутствующих в них примесей и их физической реакции на различные воздействия окружающей среды..

Собственные полупроводники

Те элементы, молекулярная структура которых состоит из одного типа атома. К таким типам полупроводников относятся кремний и германий..

Молекулярная структура собственных полупроводников является тетраэдрической; то есть он имеет ковалентные связи между четырьмя окружающими атомами, как показано на рисунке ниже.

Каждый атом собственного полупроводника имеет 4 валентных электрона; то есть 4 электрона, вращающиеся во внешнем слое каждого атома. В свою очередь каждый из этих электронов образует связи со смежными электронами.

Таким образом, каждый атом имеет 8 электронов в своем наиболее поверхностном слое, который образует прочный союз между электронами и атомами, составляющими кристаллическую решетку..

Из-за этой конфигурации электроны не могут легко перемещаться внутри структуры. Таким образом, в стандартных условиях собственные полупроводники ведут себя как изолятор.

Однако проводимость собственного полупроводника возрастает всякий раз, когда температура увеличивается, поскольку некоторые валентные электроны поглощают тепловую энергию и отделяются от связей.

Эти электроны становятся свободными электронами и, если на них правильно воздействует разница в электрическом потенциале, они могут способствовать циркуляции тока в кристаллической решетке..

В этом случае свободные электроны переходят в зону проводимости и переходят к положительному полюсу источника потенциала (например, батареи)..

Движение валентных электронов вызывает вакуум в молекулярной структуре, что приводит к эффекту, подобному тому, который мог бы вызвать положительный заряд в системе, поэтому они рассматриваются как носители положительного заряда..

Затем имеет место обратный эффект, поскольку некоторые электроны могут выпадать из зоны проводимости до тех пор, пока валентный слой не высвободит энергию в процессе, который получает название рекомбинации..

Внешние полупроводники

Они соответствуют включением примесей в собственные проводники; то есть путем включения трехвалентных или пятивалентных элементов.

Этот процесс известен как легирование и направлен на повышение проводимости материалов, улучшение физических и электрических свойств этих.

Подставляя собственный атом полупроводника на атом другого компонента, можно получить два типа внешних полупроводников, которые подробно описаны ниже..

Полупроводник типа Р

В этом случае примесь является трехвалентным полупроводниковым элементом; то есть с тремя (3) электронами в своей валентной оболочке.

Нарушающие элементы в структуре называются легирующими элементами. Примерами этих элементов для полупроводников P-типа являются бор (B), галлий (Ga) или индий (In).

Не имея валентного электрона для образования четырех ковалентных связей собственного полупроводника, полупроводник P-типа имеет зазор в недостающем звене.

Это делает прохождение электронов, которые не принадлежат к кристаллической сети через эту дырку с носителем положительного заряда.

Из-за положительного заряда зазора звена этот тип проводников называется буквой «Р» и, следовательно, они распознаются как акцепторы электронов..

Поток электронов через зазоры связи создает электрический ток, который течет в направлении, противоположном току, получаемому от свободных электронов..

Полупроводник типа N

Навязчивый элемент в конфигурации дается пятивалентными элементами; то есть те, которые имеют пять (5) электронов в валентной зоне.

В этом случае примесями, которые включены в собственный полупроводник, являются такие элементы, как фосфор (P), сурьма (Sb) или мышьяк (As).

Присадки имеют дополнительный валентный электрон, который, не имея ковалентной связи для присоединения, автоматически может свободно перемещаться по кристаллической сети..

Здесь электрический ток циркулирует через материал благодаря избытку свободных электронов, обеспечиваемых легирующей добавкой. Поэтому полупроводники N-типа считаются донорами электронов..

черты

Полупроводники характеризуются двойной функциональностью, энергоэффективностью, разнообразием применений и низкой стоимостью. Наиболее выдающиеся характеристики полупроводников подробно описаны ниже.

— Его реакция (проводник или изолятор) может варьироваться в зависимости от чувствительности элемента к освещению, электрическим полям и магнитным полям окружающей среды..

— Если полупроводник подвергается воздействию низкой температуры, электроны будут удерживаться вместе в валентной зоне, и, следовательно, не будут возникать свободные электроны для циркуляции электрического тока..

Напротив, если полупроводник подвергается воздействию высоких температур, тепловая вибрация может влиять на прочность ковалентных связей атомов элемента, оставляя свободные электроны для электропроводности..

— Проводимость полупроводников варьируется в зависимости от доли примесей или легирующих элементов внутри собственного полупроводника..

Например, если 10 миллионов атомов бора включены в миллион атомов кремния, это соотношение увеличивает проводимость соединения в тысячу раз по сравнению с проводимостью чистого кремния..

— Составные или внешние полупроводники могут иметь оптические и электрические свойства, значительно превосходящие свойства собственных полупроводников.Примером этого аспекта является арсенид галлия (GaAs), преимущественно используемый в радиочастотных и других применениях оптоэлектронных приложений..

приложений

Полупроводники широко используются в качестве сырья при сборке электронных элементов, которые являются частью нашей повседневной жизни, таких как интегральные схемы.

Одним из основных элементов интегральной схемы являются транзисторы. Эти устройства выполняют функцию обеспечения выходного сигнала (колебательный, усиленный или выпрямленный) в соответствии с конкретным входным сигналом..

Кроме того, полупроводники также являются основным материалом диодов, используемых в электронных схемах для обеспечения прохождения электрического тока только в одном направлении..

Для конструкции диодов образуются внешние полупроводниковые соединения типа P и типа N. Посредством чередующихся элементов носителя и доноров электронов активируется механизм баланса между обеими зонами..

Таким образом, электроны и дыры в обеих зонах пересекаются и дополняют друг друга при необходимости. Это происходит двумя способами:

— Происходит перенос электронов из зоны N-типа в зону P. В зоне N-типа преобладает зона положительного нагружения..

— Представлен проход электрононосных дырок из зоны P-типа в зону N-типа. Зона P-типа приобретает преимущественно отрицательный заряд.

Наконец, создается электрическое поле, которое вызывает циркуляцию тока только в одном направлении; то есть из зоны N в зону P.

Кроме того, используя комбинации внутренних и внешних полупроводников, можно получить устройства, которые выполняют функции, аналогичные вакуумной трубке, объем которой в сотни раз превышает ее объем..

Этот тип приложений применяется к интегральным схемам, таким как микропроцессорные микросхемы, которые покрывают значительное количество электрической энергии.

Полупроводники присутствуют в электронных устройствах, которые мы используем в нашей повседневной жизни, таких как оборудование коричневой линии, такое как телевизоры, видеоплееры, звуковое оборудование; компьютеры и сотовые телефоны.

примеров

Наиболее распространенным полупроводником в электронной промышленности является кремний (Si). Этот материал присутствует в устройствах, которые составляют интегральные схемы, которые являются частью нашей повседневной жизни..

Германий и кремниевые сплавы (SiGe) используются в высокоскоростных интегральных схемах для радаров и усилителей электрических инструментов, таких как электрогитары.

Другим примером полупроводника является арсенид галлия (GaAs), широко используемый в усилителях сигнала, в частности, сигналы с высоким коэффициентом усиления и низким уровнем шума..

Источник

Полупроводники — что это: типы, суть, промышленность и инвестиции

Здравствуйте, уважаемые читатели проекта Тюлягин! В сегодняшней статье поговорим о полупроводниках. Вы узнаете что такое полупроводники в чем их основное значение и суть в современной промышленности, технологиях и экономике. Разберем основные типы полупроводников и их особенности. Также поговорим о нюансах при инвестировании в полупроводники и полупроводниковую промышленность, включая риски полупроводников, такие как высокий и низкий спрос на полупроводники и их дефицит.

Что такое полупроводники примеры. Смотреть фото Что такое полупроводники примеры. Смотреть картинку Что такое полупроводники примеры. Картинка про Что такое полупроводники примеры. Фото Что такое полупроводники примеры

Содержание статьи:

Что такое полупроводник?

Полупроводник — это материальный продукт, обычно состоящий из кремния, который проводит электричество больше, чем изолятор, такой как стекло, но меньше, чем чистый проводник, такой как медь или алюминий. Их проводимость и другие свойства могут быть изменены путем введения примесей, называемых легированием, для удовлетворения конкретных потребностей электронного компонента, в котором он находится.

Полупроводники, также известные как чипы, можно найти в тысячах продуктов, таких как компьютеры, смартфоны, бытовая техника, игровое оборудование и медицинское оборудование.

Суть полупроводников

Полупроводниковые устройства могут демонстрировать ряд полезных свойств, таких как показывать переменное сопротивление, легче пропускать ток в одном направлении, чем в другом, и реагировать на свет и тепло. Их фактическая функция включает усиление сигналов, переключение и преобразование энергии. Таким образом, они находят широкое применение почти во всех отраслях промышленности, а компании, производящие и тестирующие их, считаются отличными индикаторами состояния экономики в целом.

Типы полупроводников

Вообще говоря, полупроводники делятся на четыре основные категории продукции:

Память

Микросхемы памяти служат временным хранилищем данных и передают информацию в мозг компьютерных устройств и из него. Консолидация рынка памяти продолжается, в результате чего цены на память настолько низки, что лишь несколько гигантов, таких как Toshiba, Samsung и NEC, могут позволить себе остаться в игре.

Микропроцессоры

Это центральные процессоры, которые содержат базовую логику для выполнения задач. Доминирование Intel в сегменте микропроцессоров вытеснило почти всех конкурентов (за исключением Advanced Micro Devices — AMD) с основного рынка в более мелкие ниши или разные сегменты в целом.

Товарная интегральная схема

Иногда их называют «стандартными чипами», они производятся огромными партиями для повседневной обработки. Этот сегмент, в котором доминируют очень крупные азиатские производители микросхем, предлагает мизерную прибыль, с которой могут конкурировать только крупнейшие полупроводниковые компании.

Комплекс SOC

«Система на кристалле» («System on a Chip» — SOC) — это, по сути, создание микросхемы интегральной схемы с возможностью использования всей системы. Рынок вращается вокруг растущего спроса на потребительские товары, сочетающие в себе новые функции и более низкие цены. Поскольку двери на рынки памяти, микропроцессоров и товарных интегральных схем плотно закрыты, сегмент SOC, пожалуй, единственный, у кого осталось достаточно возможностей для привлечения широкого круга компаний.

Полупроводниковая промышленность

Успех в полупроводниковой промышленности зависит от создания более компактных, быстрых и дешевых продуктов. Преимущество малого размера заключается в том, что на один и тот же чип можно поместить больше энергии. Чем больше транзисторов на микросхеме, тем быстрее она выполняет свою работу. Это создает жесткую конкуренцию в отрасли, а новые технологии снижают стоимость производства одного чипа, так что в течение нескольких месяцев цена нового чипа может упасть на 50%.

Это привело к закономерности, названной законом Мура, который гласит, что количество транзисторов в плотной интегральной схеме удваивается примерно каждые два года. Это наблюдение названо в честь Гордона Мура, соучредителя Fairchild Semiconductor и Intel, который написал статью с описанием этого в 1965 году. В настоящее время период удвоения часто составляет 18 месяцев — цифру, которую приводит исполнительный директор Intel Дэвид Хаус.

В результате на производителей микросхем постоянно оказывается давление, чтобы они изобрели что-то лучше и даже дешевле, чем то, что определяло современное состояние всего несколько месяцев назад. Поэтому полупроводниковым компаниям необходимо поддерживать большие бюджеты на исследования и разработки. Ассоциация исследования рынка полупроводников IC Insights сообщила, что 10 крупнейших полупроводниковых компаний потратили в среднем 13,0% продаж на НИОКР в 2017 году, в диапазоне от 5,2% до 24,0% для отдельных компаний.

Традиционно полупроводниковые компании контролировали весь производственный процесс, от проектирования до производства. Тем не менее, многие производители микросхем теперь делегируют все больше и больше продукции другим представителям отрасли. Литейные компании, единственной сферой деятельности которых является производство, в последнее время вышли на передний план, предлагая привлекательные варианты аутсорсинга. Помимо литейных заводов, ряды дизайнеров, специализирующихся на производстве, и тестировщиков микросхем начинают пополняться. Компании по производству микросхем становятся все более экономичными и эффективными. Производство чипов теперь напоминает кухню ресторана изысканной кухни, где повара выстраиваются в очередь, чтобы добавить в смесь нужные специи.

В 1980-е производители микросхем жили с доходностью (количество работающих устройств от всего произведенного) 10-30%. Сегодня некоторые производители микросхем стремятся к доходности 80–90%. Это требует очень дорогих производственных процессов. В результате многие компании, производящие полупроводники, занимаются проектированием и маркетингом, но предпочитают отдать часть или все производство на аутсорсинг. Известные как производители микросхем без фабрики, эти компании имеют высокий потенциал роста, поскольку они не обременены накладными расходами, связанными с производством или «изготовлением».

Инвестиции в полупроводниковую промышленность

Помимо инвестирования в отдельные компании, есть несколько способов контролировать инвестиционные показатели всего сектора. К ним относятся эталонный индекс PHLX Semiconductor Index, известный как SOX, а также его производные формы в биржевых фондах. Есть также индексы, которые делят сектор на производителей микросхем и производителей оборудования для микросхем. Последний разрабатывает и продает оборудование и другую продукцию, используемую для разработки и тестирования полупроводников.

Кроме того, некоторые зарубежные рынки, такие как Тайвань, Южная Корея и в меньшей степени Япония, сильно зависят от полупроводников, и поэтому их индексы также дают представление о состоянии мировой промышленности.

Особенности инвестирования в полупроводники

Если инвесторы в полупроводники должны помнить одну вещь, это должно быть то, что полупроводниковая промышленность очень циклична. Производители полупроводников часто сталкиваются с циклами «подъема и спада», основанными на базовом спросе на продукты на основе микросхем. В хорошие времена прибыль производителей микросхем может быть очень высокой, из-за высокого спроса и дефицита полупродников на рынке. Однако когда спрос падает, цены на микросхемы могут резко упасть и оказать серьезное влияние на цепочки поставок во многих отраслях.

Спрос обычно отслеживает спрос со стороны конечного рынка на персональные компьютеры, сотовые телефоны и другое электронное оборудование. В хорошие времена такие компании, как Intel и Toshiba, не могут производить микрочипы достаточно быстро, чтобы удовлетворить спрос, возникает дефицит полупроводников на рынке. Когда наступают тяжелые времена, они могут быть совершенно жестокими. Например, низкие продажи ПК могут поставить отрасль — и цены на ее акции — в штопор.

В то же время нет смысла говорить о «цикле чипа», как если бы это было событием особого характера. В то время как полупроводники по-прежнему являются сырьевым бизнесом, их конечные рынки настолько многочисленны — ПК, коммуникационная инфраструктура, автомобили, потребительские товары и т. д. — что маловероятно, что избыток производственных мощностей в одной области приведет к падению всей отрасли.

Риски цикличности

Удивительно, но цикличность отрасли может в определенной степени утешить инвесторов. В некоторых других технологических секторах, таких как телекоммуникационное оборудование, никогда нельзя быть полностью уверенным в том, является ли состояние циклическим или постоянным. Напротив, инвесторы могут быть почти уверены, что рынок в какой-то момент в не столь отдаленном будущем развернется.

Цикличность дает некоторое утешение, но также создает риск для инвесторов. Производители чипов должны регулярно участвовать в азартных играх с высокими ставками. Большой риск связан с тем, что после крупного проекта разработки компаниям может потребоваться много месяцев или даже лет, чтобы выяснить, сорвали ли они джекпот или все сорвали. Одной из причин задержки является переплетенная, но фрагментированная структура отрасли: различные секторы достигают пика и минимума в разное время.

Например, нижняя точка для литейных производств часто наступает намного раньше, чем для разработчиков микросхем. Другой причиной является длительное время выполнения заказа в отрасли: на разработку микросхемы или создание литейного цеха уходят годы, и еще больше времени, прежде чем продукты приносят прибыль.

Компании, производящие полупроводники, сталкиваются с классической загадкой: двигает ли рынок технология, или рынок движет технологией. Инвесторы должны признать, что оба случая применимы для полупроводниковой промышленности.

Поскольку компании тратят значительную часть доходов на исследования и разработки, окупаемость которых может занять несколько месяцев или даже лет — а иногда и никогда, если технология неисправна, — инвесторам следует с осторожностью относиться к заявлениям компаний, которые утверждают, что владеют новейшими и лучшими технологиями в полупроводниковой промышленности.

Популярные вопросы о полупроводниках

Чем полупроводник отличается от проводника или изолятора?

Полупроводник, по сути, функционирует как гибрид проводника и изолятора. В то время как проводники представляют собой материалы с высокой проводимостью, которые позволяют течь заряду при приложении напряжения, а изоляторы не допускают протекания тока, полупроводники поочередно действуют как изолятор и проводник там, где это необходимо.

Что такое полупроводник N-типа?

Полупроводник n-типа представляет собой полупроводник со смешанными примесями, в котором используются пятивалентные примесные атомы, такие как фосфор, мышьяк, сурьма, висмут.

Что такое полупроводник P-типа?

Полупроводник p-типа — это тип примесного полупроводника, который содержит трехвалентные примеси, такие как бор и алюминий, которые увеличивают уровень проводимости обычного полупроводника, сделанного исключительно из кремния.

Что такое собственный полупроводник?

Собственный или чистый (нелегированный) полупроводник — это полупроводник, в который не добавлены какие-либо примеси или легирующие примеси, как в случае полупроводников p-типа и n-типа. В собственных полупроводниках количество возбужденных электронов и количество дырок равны: n = p.

Резюме

А на этом сегодня все про полупроводники. Надеюсь статья оказалась для вас полезной. Делитесь статьей в социальных сетях и мессенджерах и добавляйте сайт в закладки. Успехов и до новых встреч на страницах проекта Тюлягин!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *