Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ «ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ» Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… словарях:

ОписаниС β€” 3.2. ОписаниС Π‘Π˜Π—ΠžΠ” Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΡƒΡŽΡ‰ΠΈΠ΅ с ΠΏΡ€ΠΈΠ½ΡƒΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π°Ρ‡Π΅ΠΉ Π²ΠΎΠ·Π΄ΡƒΡ…Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ с масками, полумасками ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒΠΌΠ°ΡΠΊΠ°ΠΌΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ состоят ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… элСмСнтов: Π°) ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ², Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ (ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅) ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ вСсь Π²ΠΎΠ·Π΄ΡƒΡ…,… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

Π“ΠžΠ‘Π’ 22267-76: Π‘Ρ‚Π°Π½ΠΊΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΠ΅. Π‘Ρ…Π΅ΠΌΡ‹ ΠΈ способы ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² β€” ВСрминология Π“ΠžΠ‘Π’ 22267 76: Π‘Ρ‚Π°Π½ΠΊΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΠ΅. Π‘Ρ…Π΅ΠΌΡ‹ ΠΈ способы ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π» Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°: 25.1. МС Ρ‚ΠΎΠ΄Ρ‹ измСрСния ΠœΠ΅Ρ‚ΠΎΠ΄ 1 ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° для измСрСния Π΄Π»ΠΈΠ½ ΠΏΡ€ΠΈ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ ΠΎΡ€Π³Π°Π½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ 2… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² измСрСния β€” 26.2. ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² измСрСния 2.2.1. ΠœΠ΅Ρ‚ΠΎΠ΄ 1 БрСдства измСрСния: образцовая Π΄Π΅Ρ‚Π°Π»ΡŒ, Π΄Π°Ρ‚Ρ‡ΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ. Π‘Ρ…Π΅ΠΌΠ° измСрСния ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° Π½Π° Ρ‡Π΅Ρ€Ρ‚. 79. Π§Π΅Ρ€Ρ‚. 79 ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π‘Ρ‚Π°Π½ΠΎΠΊ настраиваСтся Π½Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ взаимосвязанных… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

Π―Π΄Ρ€ΠΎ Π°Ρ‚ΠΎΠΌΠ½ΠΎΠ΅ β€” Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ массивная Ρ‡Π°ΡΡ‚ΡŒ Π°Ρ‚ΠΎΠΌΠ°, Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹ΠΌ ΠΎΡ€Π±ΠΈΡ‚Π°ΠΌ ΠΎΠ±Ρ€Π°Ρ‰Π°ΡŽΡ‚ΡΡ элСктроны. Масса Π―. Π°. ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² 4Β·103 Ρ€Π°Π· большС массы всСх входящих Π² состав Π°Ρ‚ΠΎΠΌΠ° элСктронов. Π Π°Π·ΠΌΠ΅Ρ€ Π―. Π°. ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ°Π» (10 12 10 13 см), что… … Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ совСтская энциклопСдия

Π―Π”Π Πž ΠΠ’ΠžΠœΠΠžΠ• β€” Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ массивная Ρ‡Π°ΡΡ‚ΡŒ Π°Ρ‚ΠΎΠΌΠ°, состоящая ΠΈΠ· ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² (Π½ΡƒΠΊΠ»ΠΎΠ½ΠΎΠ²). Масса Π―. Π°. ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² 4 β€’103 Ρ€Π°Π· большС массы всСх входящих Π² состав Π°Ρ‚ΠΎΠΌΠ° эл Π½ΠΎΠ². Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π―. Π°. ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ = 10 12 10=13 см. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡. заряд ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½ ΠΈ ΠΏΠΎ абс.… … ЀизичСская энциклопСдия

РСляционная Π°Π»Π³Π΅Π±Ρ€Π° β€” РСляционная Π°Π»Π³Π΅Π±Ρ€Π° замкнутая систСма ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π½Π°Π΄ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΠΈ Π² рСляционной ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ рСляционной Π°Π»Π³Π΅Π±Ρ€Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ рСляционными опСрациями. ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π±ΠΎΡ€ ΠΈΠ· 8 ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π­. Коддом Π² 1970 Π΅ Π³ΠΎΠ΄Ρ‹ и… … ВикипСдия

высота профиля пнСвматичСской ΡˆΠΈΠ½Ρ‹ β€” высота профиля ΡˆΠΈΠ½Ρ‹ ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°Ρ€ΡƒΠΆΠ½Ρ‹ΠΌ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΈ посадочным Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ пнСвматичСской ΡˆΠΈΠ½Ρ‹. D Π½Π°Ρ€ΡƒΠΆΠ½Ρ‹ΠΉ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΡˆΠΈΠ½Ρ‹; DΠΏ посадочный Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΡˆΠΈΠ½Ρ‹; B ΡˆΠΈΡ€ΠΈΠ½Π° профиля ΡˆΠΈΠ½Ρ‹; H высота профиля ΡˆΠΈΠ½Ρ‹; R … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΈ протягивании β€” Π Π°Π·Π½ΠΎΡΡ‚ΡŒ высот ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠ°Ρ€Ρ‹ смСТных Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Π·ΡƒΠ±ΡŒΠ΅Π² протяТки. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ кинСматичСская схСма ΠΏΡ€ΠΈ протягивании Π½Π΅ прСдусматриваСт двиТСния ΠΏΠΎΠ΄Π°Ρ‡ΠΈ, Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ Π΅Ρ‘ являСтся подъСм ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΡ‡Π΅Ρ€Π΅Π΄Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΡƒΡ‰Π΅Π³ΠΎ Π·ΡƒΠ±Π° над… … Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ тСхничСского ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠ°

ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° измСрСния β€” 12.2. ОписаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° измСрСния 12.2.1. ΠœΠ΅Ρ‚ΠΎΠ΄ 1 БрСдства измСрСния: колСнчатая ΠΎΠΏΡ€Π°Π²ΠΊΠ°, ΠΏΡ€ΠΈΠ±ΠΎΡ€ для измСрСния Π΄Π»ΠΈΠ½, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ ΠΎΠΏΡ€Π°Π²ΠΊΠ°. Π‘Ρ…Π΅ΠΌΠ° измСрСния ΡƒΠΊΠ°Π·Π°Π½Π° Π½Π° Ρ‡Π΅Ρ€Ρ‚. 42. Π§Π΅Ρ€Ρ‚. 42 ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ измСрСния ΠšΠΎΠ»Π΅Π½Ρ‡Π°Ρ‚ΡƒΡŽ ΠΎΠΏΡ€Π°Π²ΠΊΡƒ 1 ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ на… … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ β€” 2.7 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΠŸΡ€ΠΎΡ†Π΅ΡΡ выполнСния сСрии ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ, Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π΅ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ испытаний, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ выполнСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ … Π‘Π»ΠΎΠ²Π°Ρ€ΡŒ-справочник Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎ-тСхничСской Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜Ρ… Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ раздСлСнная Π½Π° Π΄Π²Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ?

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ yΠ±)частноС чисСл a ΠΈ св)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ yΠ³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c?

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ y

Π±)частноС чисСл a ΠΈ с

Π²)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ y

Π³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9.

НайдитС сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24 % ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ числа.

1) 65, 1 2) 45, 3 3)50, 2 4)54.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности?

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π­Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ. Π‘ Π΄Ρ€ΡƒΠ³ΠΈΠΌ сСйчас Ρ€Π°Π·Π±ΠΈΡ€Π°ΡŽΡΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΡΠΌΡ‹Π΅ прСдставлСны уравнСниями Π²ΠΈΠ΄Π° А1x + B1y + C1 = 0 ΠΈ A2x + B2y + C2 = 0. По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ cos f = (A1A2 + B1B2) / \ |Β¬ (A1Β² + B1Β²) Γ— \ |Β¬ (A2Β² + B2Β²). A1 = 1 A2 = 2 B1 = 5 B2 = 1 Π§ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Π²Π΅Π½ : 1Γ—2 + 5Γ—1 = 2 + 5 = 7 Π—Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ : ΠšΠΎΡ€Π΅Π½ΡŒΠΈΠ·(1..

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ?

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ yΠ±)частноС чисСл a ΠΈ св)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ yΠ³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c?

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ y

Π±)частноС чисСл a ΠΈ с

Π²)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ y

Π³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9.

НайдитС сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24 % ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ числа.

1) 65, 1 2) 45, 3 3)50, 2 4)54.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности?

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ с Π½Π΅Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ сторрнами АВ ΠΈ АБ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ высота АН ΠΈ биссСктриса АМ?

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ с Π½Π΅Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ сторрнами АВ ΠΈ АБ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ высота АН ΠΈ биссСктриса АМ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» НАМ Ρ€Π°Π²Π΅Π½ полуразности ΡƒΠ³Π»ΠΎΠ² Π’ ΠΈ Π‘.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π° ΠΈ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π½Π° ΠΈ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π².

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π­Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ. Π‘ Π΄Ρ€ΡƒΠ³ΠΈΠΌ сСйчас Ρ€Π°Π·Π±ΠΈΡ€Π°ΡŽΡΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΡΠΌΡ‹Π΅ прСдставлСны уравнСниями Π²ΠΈΠ΄Π° А1x + B1y + C1 = 0 ΠΈ A2x + B2y + C2 = 0. По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ cos f = (A1A2 + B1B2) / \ |Β¬ (A1Β² + B1Β²) Γ— \ |Β¬ (A2Β² + B2Β²). A1 = 1 A2 = 2 B1 = 5 B2 = 1 Π§ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Π²Π΅Π½ : 1Γ—2 + 5Γ—1 = 2 + 5 = 7 Π—Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ : ΠšΠΎΡ€Π΅Π½ΡŒΠΈΠ·(1..

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜Ρ… Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ раздСлСнная Π½Π° Π΄Π²Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ?

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ yΠ±)частноС чисСл a ΠΈ св)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ yΠ³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c?

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ y

Π±)частноС чисСл a ΠΈ с

Π²)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ y

Π³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9.

НайдитС сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24 % ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ числа.

1) 65, 1 2) 45, 3 3)50, 2 4)54.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности?

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π­Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ. Π‘ Π΄Ρ€ΡƒΠ³ΠΈΠΌ сСйчас Ρ€Π°Π·Π±ΠΈΡ€Π°ΡŽΡΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΡΠΌΡ‹Π΅ прСдставлСны уравнСниями Π²ΠΈΠ΄Π° А1x + B1y + C1 = 0 ΠΈ A2x + B2y + C2 = 0. По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ cos f = (A1A2 + B1B2) / \ |Β¬ (A1Β² + B1Β²) Γ— \ |Β¬ (A2Β² + B2Β²). A1 = 1 A2 = 2 B1 = 5 B2 = 1 Π§ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Π²Π΅Π½ : 1Γ—2 + 5Γ—1 = 2 + 5 = 7 Π—Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ : ΠšΠΎΡ€Π΅Π½ΡŒΠΈΠ·(1..

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜Ρ… Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ раздСлСнная Π½Π° Π΄Π²Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл ΠΈ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24% ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ?

ЧВО Π’ΠΠšΠžΠ• ΠŸΠžΠ›Π£Π ΠΠ—ΠΠžΠ‘Π’Π¬ И ΠŸΠžΠ›Π£Π‘Π£ΠœΠœΠ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ yΠ±)частноС чисСл a ΠΈ св)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ yΠ³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c?

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π±ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ выраТСния : Π°)сумма чисСл x ΠΈ y

Π±)частноС чисСл a ΠΈ с

Π²)ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ чисСл x ΠΈ y

Π³)ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ чисСл a ΠΈ c.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14, 9.

НайдитС сумму этих чисСл, Ссли извСстно, Ρ‡Ρ‚ΠΎ 24 % ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ числа Π½Π° 0, 6 мСньшС Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ числа.

1) 65, 1 2) 45, 3 3)50, 2 4)54.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности?

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ Π΅Ρ‘ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ ΠΈΡ… полуразности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14?

ΠŸΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… чисСл Ρ€Π°Π²Π½Π° 14.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ частноС чисСл.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π­Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ. Π‘ Π΄Ρ€ΡƒΠ³ΠΈΠΌ сСйчас Ρ€Π°Π·Π±ΠΈΡ€Π°ΡŽΡΡŒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

ΠŸΡ€ΡΠΌΡ‹Π΅ прСдставлСны уравнСниями Π²ΠΈΠ΄Π° А1x + B1y + C1 = 0 ΠΈ A2x + B2y + C2 = 0. По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ cos f = (A1A2 + B1B2) / \ |Β¬ (A1Β² + B1Β²) Γ— \ |Β¬ (A2Β² + B2Β²). A1 = 1 A2 = 2 B1 = 5 B2 = 1 Π§ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ Ρ€Π°Π²Π΅Π½ : 1Γ—2 + 5Γ—1 = 2 + 5 = 7 Π—Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ : ΠšΠΎΡ€Π΅Π½ΡŒΠΈΠ·(1..

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΠΎΠ»ΡƒΡ€Π°Π·Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *