Что такое правильный тетраэдр в геометрии
Тетраэдр
Тетраэдр имеет следующие характеристики:
Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.
Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.
Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.
Отметим, что очень редко, но встречаются геометрические тела, составленные не из правильных треугольников, и их тоже называют тетраэдры, так как они имеют четыре грани.
Математические характеристики тетраэдра
Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.
Радиус описанной сферы тетраэдра определяется по формуле:
Сфера может быть вписана внутрь тетраэдра.
Радиус вписанной сферы тетраэдра определяется по формуле:
Площадь поверхности тетраэдра
Для наглядности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой:
Объем тетраэдра определяется по следующей формуле:
Высота тетраэдра определяется по следующей формуле:
Расстояние до центра основания тетраэдра определяется по формуле:
Вариант развертки
Древнегреческий философ Платон ассоциировал тетраэдр с «земным» элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.
Заметим, что это не единственный вариант развертки.
Видео. Тетраэдр из набора «Волшебные грани»
Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора «Волшебные грани».
Сборка многогранника из набора:
Подробная сборка от Алексея Жигулева (youtube-канал Оригами)
вращение готового многогранника:
Видео. Вращение всех правильных многогранников
Популярное
Монумент «Звезда Кеплера» (норв. Keplerstjernen), высотой 45 метров, расположен недалеко от города Осло (Норвегия) в окрестностях аэропорта.
Современный кинематограф постарался привлечь внимание зрителя, используя геометрические формы «инопланетного происхождения».
В этой статье мы постараемся ответить на вопрос: «Можно ли купить для класса Волшебные грани используя бюджетные средства»?
Почему бумага? Иногда приходится слышать вопрос: «Почему вы выбрали для сборки многогранников такой материал как бумага (или точнее дизайнерский картон)? Это же.
Для Вашего удобства мы снизили стоимость доставки наборов «Волшебные грани» в разы!
Тетраэдр.
Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.
Свойства тетраэдра.
Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.
Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.
Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.
Типы тетраэдров.
У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.
Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.
Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:
— Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.
— Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.
— Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.
— Каркасный тетраэдр — тетраэдр, который таким условиям:
— Соразмерный тетраэдр, бивысоты у него одинаковы.
— Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.
Формулы для определения элементов тетраэдра.
Высота тетраэдра:
Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.
Основные формулы для правильного тетраэдра:
Правильный тетраэдр
Тетраэдр | |
---|---|
Тип | Правильный многогранник |
Грань | Правильный треугольник |
Вершин | |
Рёбер | |
Граней | |
Граней при вершине | |
Длина ребра | |
Площадь поверхности | |
Объём | |
Высота | |
Радиус вписаной сферы | |
Радиус описанной сферы | |
Угол наклона ребра | |
Угол наклона грани | |
Группа симметрий | Тетраэдральная (Th) |
Двойственный многогранник | Тетраэдр |
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.
Свойства правильного тетраэдра
Ссылки
Правильные (Платоновы тела) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Звёздчатый додекаэдр • Звёздчатый икосододекаэдр • Звёздчатый икосаэдр • Звёздчатый многогранник • Звёздчатый октаэдр | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выпуклые |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Формулы, теоремы, теории | ПолезноеСмотреть что такое «Правильный тетраэдр» в других словарях:правильный тетраэдр — taisyklingasis tetraedras statusas T sritis fizika atitikmenys: angl. regular tetrahedron vok. reguläres Tetraeder, n rus. правильный тетраэдр, m pranc. tétraèdre régulier, m … Fizikos terminų žodynas Правильный треугольник — Правильный треугольник. Правильный (или равносторонний) треугольник это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны … Википедия Правильный многогранник — Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия Тетраэдр — (греч. τετραεδρον четырёхгранник) простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Содержание 1 Связанные определения … Википедия Правильный многогранник — геометрическое тело, ограниченное плоскими гранями, имеющими вид правильных многоугольников одинакового размера; все двугранные углы такого многогранника равны между собой, все многогранные углы при вершинах равны и заключают равное число граней … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона ТЕТРАЭДР КУБИЧЕСКИЙ — простая форма в куб. синг. Правильный замкнутый четырехгранник с гранями в виде правильных треугольников. Син.: тетраэдр, тетраэдр правильный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия ТЕТРАЭДР — (греч., от tetras четыре, и hedra основание). Тело ограниченное четырьмя равносторонними треугольниками четырехгранник. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТЕТРАЭДР греч., от tetras, четыре, и hedra,… … Словарь иностранных слов русского языка ТЕТРАЭДР ПРАВИЛЬНЫЙ — син. термина тетраэдр кубический. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия тетраэдр — [тэ], а; м. [греч. tetra четыре и hedra грань] Матем. Правильный четырёхгранник, каждая грань которого имеет форму треугольника; треугольная пирамида. * * * тетраэдр (от тетра. и греч. hédra грань), один из пяти типов правильных… … Энциклопедический словарь правильный многогранник — ▲ многогранник ↑ идеальный правильный многогранник равносторонний равноугольный многогранник. тетраэдр. куб, гексаэдр. октаэдр. додекаэдр. икосаэдр … Идеографический словарь русского языка ТетраэдрВ правильном тетраэдре все грани одинакового размера и формы (конгруэнтные), а все ребра одинаковой длины. Координаты правильного тетраэдраСледующие декартовы координаты определяют четыре вершины тетраэдра с длиной ребра 2 с центром в начале координат и двумя ребрами уровня: Тетраэдр: (1,1,1), (1, −1, −1), (−1,1, −1), (−1, −1,1) Двойственный тетраэдр: (−1, −1, −1), (−1,1,1), (1, −1,1), (1,1, −1) Углы и расстоянияДля правильного тетраэдра с длиной ребра а : Изометрии правильного тетраэдраОртогональные проекции правильного тетраэдра
Поперечное сечение правильного тетраэдраЭто свойство также применяется к тетрагональным дифеноидам при применении к двум специальным парам ребер. Сферическая черепица
Спиральная укладка
Изометрии неправильных тетраэдров
|