Что такое правило треугольника
Сложение и вычитание векторов
Существование: Имеем два следующих случая:
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
Такая операция выполняется по правилу многоугольника.
Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
\( \vec + \vec = \left( <
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора \( \overrightarrow \) выполняется равенство
Для произвольных точек \( A,\ B\ и\ C \) справедливо следующее равенство
Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
Разность векторов. Вычитание векторов
Длина нулевого вектора равна нулю:
\( \left| \vec <0>\right| = 0 \)
Умножение вектора на число
Определение Произведением вектора \( \overrightarrow \) на действительное число \( k \) называется вектор \( \overrightarrow \) удовлетворяющий следующим условиям:
Длина вектора \( \overrightarrow \) равна \( \left|\overrightarrow\right|=\left|k\right||\overrightarrow| \) ;
Векторы \( \overrightarrow \) и \( \overrightarrow \) сонаправлены, при \( k\ge 0 \) и противоположно направлены, если \( k\le 0 \)
Правило треугольника
Чтобы сложить векторы и
, надо взять произвольную точку и от нее отложить последовательно сначала вектор
, затем вектор
. Вектор, начало которого совпадает с началом вектора
(т.е. первого вектора), а конец – с концом вектора
(т.е. второго вектора), есть искомая сумма. На рис. 4
.
По правилу треугольника можно складывать любые векторы.
Коротко правило треугольника можно записать так:
для любых трех точек А,В и С .
Правило параллелограмма
Чтобы сложить векторы и
, надо привести их к общему началу, т.е. взять произвольную точку А, построить такие точки В и С, что
и
, и достроить полученную фигуру до параллелограмма
. Вектор
— искомая сумма (рис. 5).
|
По правилу параллелограмма можно складывать тольконеколлинеарные векторы.
Свойства сложения векторов:
Суммой n векторовназывается вектор
и обозначается так:
.
При построении суммы n векторов пользуются правилом многоугольника.
Дата добавления: 2015-11-28 ; просмотров: 3289 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Сложение векторов
Часть математических и физических задач содержит необходимость математических действий с векторами (сложение и вычитание).
Способ 1. Метод сложения треугольником
Возьмём необходимые вектора и параллельным переносом совместим конец первого вектора ( ) и начало второго ( ) (рис. 1)
Рис. 1. Сложение векторов (правило треугольника)
Тогда вектор, соединяющий начальную точку первого вектора ( ) и конец второго ( ), является вектором ( ).
Способ 2. Метод сложения параллелограммом
Возьмём необходимые вектора и параллельным переносом совместим начало первого вектора ( ) и начало второго ( ) (рис. 2). Параллельным переносом совместим конец каждого вектора с началом другого.
Рис. 2. Сложение векторов (правило параллелограмма)
Тогда вектор, соединяющий общую начальную точку первого ( ) и второго ( ) векторов и общий конец данных векторов, является вектором суммы ( ).
Вывод: в ряде задач, где присутствуют несколько однородных векторных физических величин, часто необходимо найти общий вектор (общую скорость, равнодействующую силу, полный вектор магнитной индукции или электрической напряжённости поля). Тогда необходимо сначала сложить вектора, а потом найти модуль получившегося вектора.Чаще всего первый метод используется в кинематике (сложение скоростей). Второй метод часто используют в динамике.
Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.
Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор
Покоординатное сложение векторов.
Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:
В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.
Теперь перейдем к геометрическому смыслу сложения двух векторов:
При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:
Правило параллелограмма. Сложение векторов по правилу параллелограмма.
Процедура сложения векторов по правилу параллелограмма заключается в следующем:
Правило треугольника. Сложение векторов по правилу треугольника.
Сложение векторов по правилу треугольника заключается в следующем:
Тригонометрический способ. Сложение векторов тригонометрическим способом.
Сила 1 равна 5кН и воздействует на тело в направлении, на 80 o отличающемся от направления действия второй силы, равной 8 кН.
Результирующая сила вычисляется следующим образом:
Угол между результирующей силой и первой силой равен:
А угол между второй и результирующей силой можно посчитать следующим образом: as
Он-лайн калькулятор сложения векторов.
Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.
Консультации и техническая
поддержка сайта: Zavarka Team
Учебники
Журнал «Квант»
Общие
Скаляры можно складывать, умножать и делить так же, как обычные числа.
Поскольку вектор характеризуется не только числовым значение, но и направлением, сложение векторов не подчиняется правилам сложения чисел. Например, пусть длины векторов a = 3 м, b = 4 м, тогда a + b = 3 м + 4 м = 7 м. Но длина вектора \(\vec c = \vec a + \vec b\) не будет равна 7 м (рис. 1).
Для того, чтобы построить вектор \(\vec c = \vec a + \vec b\) (рис. 2), применяются специальные правила сложения векторов.
А длину вектора суммы \(\vec c = \vec a + \vec b\) определяют по теореме косинусов \(c = \sqrt\), где \(\alpha\,\) – угол между векторами \(\vec a\) и \(\vec b\).
Правило треугольника
В зарубежной литературе этот метод называют «хвост к голове».
Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 3, а) нужно переместить вектор \(\vec b\) параллельно самому себе так, чтобы его начало совпадало с концом вектора \(\vec a\) (рис. 3, б). Тогда их суммой будет вектор \(\vec c\), начало которого совпадает с началом вектора \(\vec a\), а конец — с концом вектора \(\vec b\) (рис. 3, в).
Результат не поменяется, если перемещать вместо вектора \(\vec b\) вектор \(\vec a\) (рис. 4), т.е. \(\vec b + \vec a = \vec a + \vec b\) (свойство коммутативности векторов).
а б в Рис. 4. vector-treug-1.swf «Правило треугольников» Пример 1 Увеличить Flash vector-treug-2.swf «Правило треугольников» Пример 2 Увеличить Flash Рис. 5.
При помощи правила треугольника можно сложить два параллельных вектора \(\vec a\) и \(\vec b\) (рис. 6, а) и \(\vec a\) и \(\vec d\) (рис. 7, а). Суммы этих векторов \(\vec c = \vec a + \vec b\) и \(\vec f = \vec a + \vec d\) изображены на рис. 6, б и 7, б. Причем, модули векторов \(c = a + b\) и \(f=\left|a-d\right|\).
а б Рис. 6.
а б Рис. 7.
Правило треугольника можно применять при сложении трех и более векторов. Например, \(\vec c = \vec a_1 + \vec a_2 +\vec a_3 +\vec a_4\) (рис. 8).
Правило параллелограмма
Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 9, а) нужно переместить их параллельно самим себе так, чтобы начала векторов \(\vec a\) и \(\vec b\) находились в одной точке (рис. 9, б). Затем построить параллелограмм, сторонами которого будут эти вектора (рис. 9, в). Тогда суммой \(\vec a+ \vec b\) будет вектор \(\vec c\), начало которого совпадает с общим началом векторов, а конец — с противоположной вершиной параллелограмма (рис. 9, г).
а б
в г Рис. 9. vector-paral-1.swf «Правило параллепипеда» Увеличить Flash Рис. 10.
Вычитание векторов
Для того чтобы найти разность двух векторов \(\vec a\) и \(\vec b\) (рис. 11) нужно найти вектор \(\vec c = \vec a + \left(-\vec b \right)\) (см. Умножение вектора на скаляр) по правилу треугольника (рис. 12) или по правилу параллелограмма (рис. 13).
Рис. 11
а б в Рис. 12.
а б
б в Рис. 13.
- Что такое соматика у человека простыми словами
- Что такое мяу у молодежи