Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ: ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ (7 ΠΊΠ»Π°ΡΡ)
ΠΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ, ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ° ΠΏΡΠΎΡΡΠΎ ΡΠ½ΠΈΠΌΠ°Π΅ΡΡΡ, Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² Π½Π΅ΠΉ ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ. ΠΠ½Π°ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ:
ΠΠ΄Π΅ΡΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ½ΠΈΡΡ, ΡΡΠΎ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΠ΅ΠΉ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π΅ ΠΏΠΈΡΠ°ΡΡ Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ, Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΠΎΠΈΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ²ΡΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π΄Π²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ»Π°, ΠΊ ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠ΅ΠΌΡ ΠΈ ΡΡΠΈ, ΡΠΎ ΠΏΠΈΡΠ΅ΠΌ Π½Π΅ \(+7+3\), Π° ΠΏΡΠΎΡΡΠΎ \(7+3\), Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΠ΅ΠΌΠ΅ΡΠΊΠ° ΡΠΎΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π΅ΡΠ»ΠΈ Π²Ρ Π²ΠΈΠ΄ΠΈΡΠ΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \((5+x)\) β Π·Π½Π°ΠΉΡΠ΅, ΡΡΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π΅ ΠΏΠΈΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΡ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΠΈΡΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅: \((x-11)+(2+3x)\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅: \((x-11)+(2+3x)=x-11+2+3x=4x-9\).
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡ, ΡΠΎ ΠΏΡΠΈ ΡΠ½ΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈ Π½Π΅Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ:
ΠΠ΄Π΅ΡΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ½ΠΈΡΡ, ΡΡΠΎ Ρ \(a\), ΠΏΠΎΠΊΠ° ΠΎΠ½ΠΎ ΡΡΠΎΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ΅, Π±ΡΠ» Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ (ΠΏΡΠΎΡΡΠΎ Π΅Π³ΠΎ Π½Π΅ ΠΏΠΈΡΠ°Π»ΠΈ), ΠΈ ΠΏΠΎΡΠ»Π΅ ΡΠ½ΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΏΠΎΠΌΠ΅Π½ΡΠ»ΡΡ Π½Π° ΠΌΠΈΠ½ΡΡ.
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΡ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΠΈΡΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ \(5-(3x+2)+(2+3x)\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΡΡΠΎΠΈΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, ΡΠΎ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° Π½Π΅Π³ΠΎ, ΡΠΎ Π΅ΡΡΡ:
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ \(-2(-3x+5)\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅: ΠΠ°ΠΊ ΠΈ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅, ΡΡΠΎΡΡΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ΅ \(-3x\) ΠΈ \(5\) ΡΠΌΠ½ΠΎΠΆΠ°ΡΡΡΡ Π½Π° \(-2\).
ΠΡΡΠ°Π»ΠΎΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ.
ΠΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ Π½Π° ΡΠΊΠΎΠ±ΠΊΡ, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Ρ ΠΊΠ°ΠΆΠ΄ΡΠΌ ΡΠ»Π΅Π½ΠΎΠΌ Π²ΡΠΎΡΠΎΠΉ:
Π¨Π°Π³ 2. Π Π°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π²ΡΡΠ΅:
— ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅β¦
Π¨Π°Π³ 3. Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅:
Π’Π°ΠΊ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΠΏΠΈΡΡΠ²Π°ΡΡ Π²ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌ Π½Π΅ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ°Π·Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°ΡΡ. ΠΠΎ Π΅ΡΠ»ΠΈ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΈΡΠ΅ΡΡ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΎΠΊ β ΠΏΠΈΡΠΈΡΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ, ΠΌΠ΅Π½ΡΡΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π½Ρ ΠΎΡΠΈΠ±ΠΈΡΡΡΡ.
Π‘ΠΊΠΎΠ±ΠΊΠ° Π² ΡΠΊΠΎΠ±ΠΊΠ΅
ΠΠ½ΠΎΠ³Π΄Π° Π² ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π·Π°Π΄Π°ΡΠΈ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, Π²Π»ΠΎΠΆΠ΅Π½Π½ΡΠΌΠΈ Π²Π½ΡΡΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ. ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ: ΡΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(7x+2(5-(3x+y))\).
Π§ΡΠΎΠ±Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ, Π½ΡΠΆΠ½ΠΎ:
— Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π²ΠΎ Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ β ΠΊΠ°ΠΊΠ°Ρ Π² ΠΊΠ°ΠΊΠΎΠΉ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ;
— ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π°ΡΠΈΠ½Π°Ρ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΡΠ°ΠΌΠΎΠΉ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ.
ΠΡΠΈ ΡΡΠΎΠΌ Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠΊΠΎΠ±ΠΎΠΊ Π½Π΅ ΡΡΠΎΠ³Π°ΡΡ Π²ΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΎΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΡΠ²Π°Ρ Π΅Π³ΠΎ ΠΊΠ°ΠΊ Π΅ΡΡΡ.
ΠΠ°Π²Π°ΠΉΡΠ΅ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π½Π°ΠΏΠΈΡΠ°Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΠΈΡΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ \(7x+2(5-(3x+y))\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΠΏΠΎΠ»Π½ΡΡΡ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π½Π°ΡΠ½Π΅ΠΌ Ρ ΡΠ°ΡΠΊΡΡΡΠΈΡ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ (ΡΠΎΠΉ, ΡΡΠΎ Π²Π½ΡΡΡΠΈ). Π Π°ΡΠΊΡΡΠ²Π°Ρ Π΅Π΅, ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΊ Π½Π΅ΠΉ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΡΡΡ β ΡΡΠΎ ΡΠ°ΠΌΠ° ΡΠΊΠΎΠ±ΠΊΠ° ΠΈ ΠΌΠΈΠ½ΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π½Π΅ΠΉ (Π²ΡΠ΄Π΅Π»Π΅Π½ΠΎ Π·Π΅Π»Π΅Π½ΡΠΌ). ΠΡΡ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠ΅ (Π½Π΅ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΠΎΠ΅) ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠ°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ Π±ΡΠ»ΠΎ.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΠΌ Π²ΡΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΊΡ, Π²Π½Π΅ΡΠ½ΡΡ.
Π£ΠΏΡΠΎΡΠ°Π΅ΠΌ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅Π΅ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅β¦
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄ΠΈΡΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ \(-(x+3(2x-1+(x-5)))\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ΄Π΅ΡΡ ΡΡΠΎΠΉΠ½Π°Ρ Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΎΠΊ. ΠΠ°ΡΠΈΠ½Π°Π΅ΠΌ Ρ ΡΠ°ΠΌΠΎΠΉ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ (Π²ΡΠ΄Π΅Π»Π΅Π½ΠΎ Π·Π΅Π»Π΅Π½ΡΠΌ). ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΠΏΠ»ΡΡ, ΡΠ°ΠΊ ΡΡΠΎ ΠΎΠ½Π° ΠΏΡΠΎΡΡΠΎ ΡΠ½ΠΈΠΌΠ°Π΅ΡΡΡ.
Π’Π΅ΠΏΠ΅ΡΡ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ Π²ΡΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΊΡ, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ. ΠΠΎ ΠΌΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌ ΡΠΏΡΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ²ΠΈΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΉ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π² ΡΡΠΎΠΉ Π²ΡΠΎΡΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠ΅.
ΠΠΎΡ ΡΠ΅ΠΉΡΠ°Ρ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΠΌ Π²ΡΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΊΡ (Π²ΡΠ΄Π΅Π»Π΅Π½ΠΎ Π³ΠΎΠ»ΡΠ±ΡΠΌ). ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ β ΡΠ°ΠΊ ΡΡΠΎ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π² ΡΠΊΠΎΠ±ΠΊΠ΅ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° Π½Π΅Π³ΠΎ.
Π ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΠΊΠΎΠ±ΠΊΡ. ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΠΌΠΈΠ½ΡΡ β ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π·Π½Π°ΠΊΠΈ ΠΌΠ΅Π½ΡΡΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅.
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ β ΡΡΠΎ ΠΈΠ·Π±Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΎΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ 4 ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ.
ΠΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ:
ΠΡΠ»ΠΈ ΠΊ ΡΠΈΡΠ»Ρ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ ΡΠΈΡΠ΅Π», ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΊ ΡΡΠΎΠΌΡ ΡΠΈΡΠ»Ρ ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, Π° Π·Π°ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅.
ΠΡΠΈΠΌΠ΅Π½ΡΡ ΡΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΈΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«+Β», Π²ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠΎΡΡ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΎΡ ΡΠ°Π½ΡΡΡ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ.
ΠΡΠΎ ΠΆΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΠΊΠΎΠ³Π΄Π° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π΄Π²Π΅ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«βΒ», ΡΠΎ ΠΏΡΠΈ ΠΈΡ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π·Π½Π°ΠΊΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅.
ΠΠΎΠ³Π΄Π° Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΠ΅ΡΠ²ΡΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠΌ Π·Π½Π°ΠΊ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ, ΡΠΎ ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΎΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ:
Π‘Π»ΡΡΠ°ΠΈ, ΠΊΠΎΠ³Π΄Π° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ.
10a + (19b β 34c) β 50 β (m + n)
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡΡΡ ΠΏΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ:
10a + 19b β 34 c β 50 β m β n
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ Π² ΡΠ»ΠΎΠΆΠ½ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ .
Π‘Π»ΠΎΠΆΠ½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ Π·Π½Π°ΠΊΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅/ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΠ΅ΠΉΡΡΠ²ΠΈΡ ΠΏΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΡΡΠΎΡΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π±ΠΎΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ.
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ. ΠΡΠ»ΠΈ ΡΡΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ. ΠΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ.
1. Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠ²ΠΎΠΉΡΡΠ²Ρ.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΌΠΌΡ Π½Π° ΡΠΈΡΠ»ΠΎ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅, Π·Π°ΡΠ΅ΠΌ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅, ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΠ΅ΠΉ Π·Π½Π°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΈΡΠ»ΠΎΠΌ ΠΈ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ Π½Π΅ ΡΡΠ°Π²ΠΈΡΡΡ.
ΠΡΠ»ΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, ΡΠΎ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡΡΡ Π½Π° (β1) ΠΈ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈ Π·Π½Π°ΠΊΠΈ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅:
2. Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠ²ΠΎΠΉΡΡΠ²Ρ:
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ, Π΅ΡΠ»ΠΈ ΡΡΡ Π³ΡΡΠΏΠΏΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ.
(b β c β d) β a = b β c β d β a
Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΊΠ°ΠΊ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ β ΠΏΡΠΎΡΡΠΎ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°ΡΡΡΡ:
ΠΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π·Π½Π°ΠΊΠΎΠ².
ΠΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠΎΠ³Π΄Π° ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, ΡΠΎ:
ΠΠΎΠ³Π΄Π° ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΎ:
Π‘ΠΊΠΎΠ±ΠΊΠ° Π½Π° ΡΠΊΠΎΠ±ΠΊΡ
ΠΠΎΠ³Π΄Π° ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΊΠΎΠ±ΠΎΠΊ Π΄ΡΡΠ³ Π½Π° Π΄ΡΡΠ³Π°, Π½ΡΠΆΠ½ΠΎ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ»Π΅Π½ Π²ΡΠΎΡΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ:
(a + b) β (c β d) = a β (c β d) + b β (c β d) = ac β ad + bc β bd
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ Π½Π° ΡΠΊΠΎΠ±ΠΊΡ:
5 Ρ ( 10 x β 2 ) + 7 ( 10 x β 2 ) =
50 Ρ Β² β 10 Ρ + 70 Ρ β 14 =
Π‘ΠΊΠΎΠ±ΠΊΠ° Π² ΡΠΊΠΎΠ±ΠΊΠ΅
Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΌΠΎΠ³ΡΡ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π²Ρ ΠΎΠ΄ΡΡ Π² Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ²:
8x + y(4 β (2x β y)) = 8x + y(4 β 2x + y) = 8x + 4y β 2xy + yΒ²
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ Π·Π½Π°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΈΡ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΎΠΊ β ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠΎΠΈΡ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΎΠΊ:
(a + b) : c = a : c + b : c;
(a β b) : c = a: c β b : c.
ΠΡΠ»ΠΈ Π·Π½Π°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, ΡΠΎ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ :
c : (a + b) = c : a + c : b;
c : (a β b) = c : a β c : b.
ΠΡΠ»ΠΈ Π·Π½Π°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ:
ΠΡΠ»ΠΈ Π·Π½Π°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΠΈΡ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΊΠΈ:
ΠΡΠ»ΠΈ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅:
ΠΠ΅ Π·Π°Π±ΡΠ²Π°Π΅ΠΌ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π·Π½Π°ΠΊΠΎΠ², ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠ΅ Π²ΡΡΠ΅:
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ
ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΠΌ ΠΈΠ·ΡΡΠ°ΡΡ ΠΎΡΠ½ΠΎΠ²Ρ Π°Π»Π³Π΅Π±ΡΡ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ Π½Π°ΡΡΠΈΠΌΡΡ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ . Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡ ΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ.
Π§ΡΠΎΠ±Ρ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, Π½ΡΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ Π΄Π²Π° ΠΏΡΠ°Π²ΠΈΠ»Π°. ΠΡΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΡΡ Π·Π°Π½ΡΡΠΈΡΡ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ Π·Π°ΠΊΡΡΡΡΠΌΠΈ Π³Π»Π°Π·Π°ΠΌΠΈ, ΠΈ ΠΏΡΠΎ ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π·Π°ΡΡΠΈΠ²Π°ΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ, ΠΌΠΎΠΆΠ½ΠΎ Π±Π»Π°Π³ΠΎΠΏΠΎΠ»ΡΡΠ½ΠΎ Π·Π°Π±ΡΡΡ.
ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎ 2. Π Π°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΈΠ·Π±Π°Π²ΠΈΡΡΡΡ ΠΎΡ Π½ΠΈΡ , Π½Π΅ Π²Π»ΠΈΡΡ Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π’ΠΎ Π΅ΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΈΠ·Π±Π°Π²Π»Π΅Π½ΠΈΡ ΠΎΡ ΡΠΊΠΎΠ±ΠΎΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 8 + (β9 + 3) ΠΏΠΎ ΠΏΡΠ΅ΠΆΠ½Π΅ΠΌΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎ Π΄Π²ΡΠΌ.
ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ, Π΅ΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, ΡΠΎ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ.
ΠΡΠ°ΠΊ, ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ ΡΡΠΎ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 8 + (β9 + 3) ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ. ΠΡΠΎΡ ΠΏΠ»ΡΡ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΡΡΠΈΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈΡΡΠ΅Π·Π½ΡΡ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΏΠ»ΡΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠ΅ΡΠ΅Π΄ Π½ΠΈΠΌΠΈ ΡΡΠΎΡΠ». Π ΡΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ 8+(β9+3) ΠΈ 8β9+3 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 3 + (β1 β 4)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, Π·Π½Π°ΡΠΈΡ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. Π’ΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΎΡΡΠ°Π½Π΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 2 + (β1)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, Π·Π½Π°ΡΠΈΡ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. Π’ΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΎΡΡΠ°Π½Π΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΡΡΠ°Π»ΠΎ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΠΎΠ΄Π° ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ΅ΠΉ Π·Π°ΠΌΠ΅Π½Π΅ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ. ΠΠ°ΠΊ ΡΡΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ?
ΠΠΎΡΡΠΎΠΌΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΡΠ»Π΅ ΠΊΠ°ΠΊΠΈΡ -Π½ΠΈΠ±ΡΠ΄Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Π’ΠΎ Π΅ΡΡΡ ΠΈΠ·Π±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ ΠΎΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠΎΡΠ΅.
Π§ΡΠΎΠ±Ρ ΡΠΏΡΠΎΡΡΠΈΡΡ Π΄Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π΄Π»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ , Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΠΎΠ±ΡΡΡ Π±ΡΠΊΠ²Π΅Π½Π½ΡΡ ΡΠ°ΡΡΡ:
Π Π°ΡΠΊΡΡΠ² ΠΎΠ΄Π½ΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠΎ ΠΏΡΡΠΈ ΠΌΠΎΠ³ΡΡ Π²ΡΡΡΠ΅ΡΠΈΡΡΡΡ Π΄ΡΡΠ³ΠΈΠ΅. Π Π½ΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ΅ ΠΆΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π°, ΡΡΠΎ ΠΈ ΠΊ ΠΏΠ΅ΡΠ²ΡΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ:
ΠΠ΄Π΅ΡΡ Π΄Π²Π° ΠΌΠ΅ΡΡΠ°, Π³Π΄Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡΡΠΊΠ°Π½ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΏΠ»ΡΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌΠΈ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ:
2 + (β3 + 1) + 3 + (β6) = 2 β 3 + 1 + 3 β 6
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 6+(β3)+(β2)
Π ΠΎΠ±ΠΎΠΈΡ ΠΌΠ΅ΡΡΠ°Ρ , Π³Π΄Π΅ ΠΈΠΌΠ΅ΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ Π½ΠΈΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ. ΠΠ΄Π΅ΡΡ ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΠ½ΠΎΠ³Π΄Π° ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π±Π΅Π· Π·Π½Π°ΠΊΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 1+(2+3β4) ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ 2 Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π±Π΅Π· Π·Π½Π°ΠΊΠ°. ΠΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π²ΠΎΠΏΡΠΎΡ, Π° ΠΊΠ°ΠΊΠΎΠΉ Π·Π½Π°ΠΊ Π±ΡΠ΄Π΅Ρ ΡΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π΄Π²ΠΎΠΉΠΊΠΎΠΉ ΠΏΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΠ»ΡΡ, ΡΡΠΎΡΡΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΠΎΠΏΡΡΡΡΡΡΡ? ΠΡΠ²Π΅Ρ Π½Π°ΠΏΡΠ°ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΌ β ΠΏΠ΅ΡΠ΅Π΄ Π΄Π²ΠΎΠΉΠΊΠΎΠΉ Π±ΡΠ΄Π΅Ρ ΡΡΠΎΡΡΡ ΠΏΠ»ΡΡ.
1 + (2 + 3 β 4) = 1 + 2 + 3 β 4
ΠΡΠΈΠΌΠ΅Ρ 4. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β5 + (2 β 3)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡΡΠΊΠ°Π΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΏΠ»ΡΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌΠΈ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. ΠΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΠ»ΡΡ:
ΠΡΠΈΠΌΠ΅Ρ 5. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ (β5)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, Π½ΠΎ ΠΎΠ½ Π½Π΅ Π·Π°ΠΏΠΈΡΠ°Π½ ΠΏΠΎ ΠΏΡΠΈΡΠΈΠ½Π΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄ΠΎ Π½Π΅Π³ΠΎ Π½Π΅ Π±ΡΠ»ΠΎ Π΄ΡΡΠ³ΠΈΡ ΡΠΈΡΠ΅Π» ΠΈΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠ°ΡΠ° Π·Π°Π΄Π°ΡΠ° ΡΠ±ΡΠ°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ² ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡΡΡΠΈΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΡΡΠΈΠΌ ΠΏΠ»ΡΡΠΎΠΌ (Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ ΠΎΠ½ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌ)
ΠΡΠΈΠΌΠ΅Ρ 6. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 2a + (β6a + b)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, Π·Π½Π°ΡΠΈΡ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. Π’ΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
ΠΡΠΈΠΌΠ΅Ρ 7. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 5a + (β7b + 6c) + 3a + (β2d)
Π Π΄Π°Π½Π½ΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅ΡΡΡ Π΄Π²Π° ΠΌΠ΅ΡΡΠ°, Π³Π΄Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΠΎΠ±ΠΎΠΈΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, Π·Π½Π°ΡΠΈΡ ΡΡΠΎΡ ΠΏΠ»ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. Π’ΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
ΠΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ. ΠΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ.
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΡΠΎ ΡΡΠΎΡ ΠΌΠΈΠ½ΡΡ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, Π½ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ , ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ
ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ. ΠΠ½Π°ΡΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡΡΡΠΈΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΌΠΈΠ½ΡΡΠΎΠΌ, ΡΡΠΎΡΡΠΈΠΌ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌΠΈ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ , ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ 5β(β2β3) ΠΈ 5+2+3 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 6 β (β2 β 5)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡΡΠΊΠ°Π΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΌΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠΎΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌΠΈ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ , Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ:
ΠΡΠΈΠΌΠ΅Ρ 3. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 2 β (7 + 3)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 4. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β(β3 + 4)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 5. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β(β8 β 2) + 16 + (β9 β 2)
ΠΠ΄Π΅ΡΡ Π΄Π²Π° ΠΌΠ΅ΡΡΠ°, Π³Π΄Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΊΠΎΠ³Π΄Π° ΠΎΡΠ΅ΡΠ΅Π΄Ρ Π΄ΠΎΡ ΠΎΠ΄ΠΈΡ Π΄ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ +(β9 β 2) Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ:
β(β8 β 2) + 16 + (β9 β 2) = 8 + 2 + 16 β 9 β 2
ΠΡΠΈΠΌΠ΅Ρ 6. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β(βa β 1)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 7. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β(4a + 3)
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 8. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ a β (4b + 3) + 15
ΠΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ:
ΠΡΠΈΠΌΠ΅Ρ 9. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 2a + (3b β b) β (3c + 5)
ΠΠ΄Π΅ΡΡ Π΄Π²Π° ΠΌΠ΅ΡΡΠ°, Π³Π΄Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π° ΠΊΠΎΠ³Π΄Π° ΠΎΡΠ΅ΡΠ΅Π΄Ρ Π΄ΠΎΡ ΠΎΠ΄ΠΈΡ Π΄ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ β(3c+5) Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ:
2a + (3b β b) β (3c + 5) = 2a + 3b β b β 3c β 5
ΠΡΠΈΠΌΠ΅Ρ 10. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ βa β (β4a) + (β6b) β (β8c + 15)
ΠΠ΄Π΅ΡΡ ΡΡΠΈ ΠΌΠ΅ΡΡΠ°, Π³Π΄Π΅ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ. ΠΠ½Π°ΡΠ°Π»Π΅ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ Π²ΡΠΎΡΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, Π·Π°ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅, Π° Π·Π°ΡΠ΅ΠΌ ΠΎΠΏΡΡΡ Π²ΡΠΎΡΠΎΠ΅:
βa β (β4a) + (β6b) β (β8c + 15) = βa + 4a β 6b + 8c β 15
ΠΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ
ΠΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ ΡΠ΅ΠΉΡΠ°Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½Π΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ:
ΠΠ° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΎΠΊ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ . Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈΡΡΠ΅Π·Π°ΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ 3Γ(4+5)
3 Γ (4 + 5) = 3 Γ 4 + 3 Γ 5
ΠΠΎΡΡΠΎΠΌΡ, Π΅ΡΠ»ΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»ΠΎ Π½Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ (ΠΈΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ) Π½Π°Π΄ΠΎ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΡΠ°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠΎ ΠΊΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΡΠ°Π²ΠΈΠ»Π°ΠΌΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈ ΡΠ°Π½Π΅Π΅?
ΠΡ ΡΠ°ΡΠΊΡΡΠ»ΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎΠΌ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ. ΠΠΎ ΡΡΠΈ ΠΆΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π²ΡΠΈΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ 1, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π΅ Π±ΡΠ» Π·Π°ΠΏΠΈΡΠ°Π½:
ΠΠΈΠ½ΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ°Π½ΡΡΠ΅ ΡΡΠΎΡΠ» ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΠΎΡΠ½ΠΎΡΠΈΠ»ΡΡ ΠΊ ΡΡΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅. Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ β1 Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠΈΡΡ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π·Π°ΠΌΠ΅Π½ΠΈΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ, Π½Π°Ρ ΠΎΠ΄ΡΡΡΡΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π½Π° ΡΡΠΌΠΌΡ:
ΠΠ°Π»Π΅Π΅ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ β1 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ :
ΠΠΎ Π½Π΅ ΠΌΠ΅ΡΠ°Π΅Ρ Π·Π½Π°ΡΡ, ΠΊΠ°ΠΊ ΡΡΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°Π±ΠΎΡΠ°ΡΡ.
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ Π½Π°ΡΡΠΈΠ»ΠΈΡΡ Π΅ΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΎΠΊ, Π²ΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠΈΡΠΈΡΡ ΠΊΡΡΠ³ ΡΠ΅ΡΠ°Π΅ΠΌΡΡ Π·Π°Π΄Π°Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ:
ΠΠ΄Π΅ΡΡ Π½ΡΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π΄Π²Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡ β ΡΠ½Π°ΡΠ°Π»Π° ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, Π° ΠΏΠΎΡΠΎΠΌ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅. ΠΡΠ°ΠΊ, ΠΏΠΎ ΠΏΠΎΡΡΠ΄ΠΊΡ:
1) Π Π°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ:
2) ΠΡΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅:
Π ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠ΅ΠΌΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ β10b+(β1) ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ:
ΠΡΠΈΠΌΠ΅Ρ 2. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ:
1) Π Π°ΡΠΊΡΠΎΠ΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ:
2) ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅. Π ΡΡΠΎΡ ΡΠ°Π· Π΄Π»Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΌΠ΅ΡΡΠ°, Π½Π΅ Π±ΡΠ΄Π΅ΠΌ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ, ΠΊΠ°ΠΊ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠΌΠ½ΠΎΠΆΠ°ΡΡΡΡ Π½Π° ΠΎΠ±ΡΡΡ Π±ΡΠΊΠ²Π΅Π½Π½ΡΡ ΡΠ°ΡΡΡ
ΠΡΠΈΠΌΠ΅Ρ 3. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8m+3m ΠΈ Π½Π°ΠΉΡΠΈ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ m=β4
m (8 + 3) = β4 (8 + 3) = β4 Γ 8 + (β4) Γ 3 = β32 + (β12) = β44
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ: ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ β ΡΡΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, Π½Π° Π±Π°Π·Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΅ΡΠ°ΡΡΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π·Π°Π΄Π°Π½ΠΈΡ Π²ΠΎ Π²ΡΠ΅Ρ
ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΠΊΠ»Π°ΡΡΠ°Ρ
. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠ²ΠΎΠΈΡΡ Π² ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ: ΠΏΡΠ°Π²ΠΈΠ»Π°
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΏΡΠΎΡΡΠΎ ΠΎΠΏΡΡΠΊΠ°ΡΡΡΡ.
ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈΡΡΠ΅Π·Π½ΡΡ, Π° ΡΠΎ, ΡΡΠΎ Π±ΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ
, Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, (aβb) = aβb.
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠΈΡΡΠ²Π°ΡΡ, ΡΡΠΎ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π½Π΅ ΠΏΡΠΈΠ½ΡΡΠΎ ΠΏΠΈΡΠ°ΡΡ Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ, Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΠΎΠΈΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ²ΡΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ Π΄Π²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ»Π° 2 ΠΈ 3, ΡΠΎ Π·Π°ΠΏΠΈΡΠ΅ΠΌ 2+3, Π° Π½Π΅ +2+3. ΠΠ½Π°ΡΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΠΎΡΡ Π² Π½Π°ΡΠ°Π»Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΡΡΠΎΠΈΡ ΠΏΠ»ΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π΅ ΠΏΠΈΡΡΡ.
ΠΡΠΈΠΌΠ΅Ρ 1: 8+(5β3) = 10. ΠΡΠ²Π΅Ρ: 8+5β3 = 10.
ΠΡΠΈΠΌΠ΅Ρ 2: 6+(β1+2) = 7. ΠΡΠ²Π΅Ρ: 6β1+2 = 7.
ΠΡΠΈΠΌΠ΅Ρ 3: 8a + (3b β6a). ΠΡΠ²Π΅Ρ: 8a + 3b β6a = 2a + 3b.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ ΠΌΠΈΠ½ΡΡ, ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΎΠΏΡΡΠΊΠ°ΡΡΡΡ, Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π²Π½ΡΡΡΠΈ Π½Π΅Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, β(aβb) = βa+b
ΠΡΠΈΠΌΠ΅Ρ 1: 8β(5β3) = 6. ΠΡΠ²Π΅Ρ: 8 β 5 + 3 = 6.
ΠΡΠΈΠΌΠ΅Ρ 2: 6 β (β1 + 2) = 5. ΠΡΠ²Π΅Ρ: 6 + 1 β 2 = 5.
ΠΡΠΈΠΌΠ΅Ρ 3: 8aβ(3b β6a). ΠΡΠ²Π΅Ρ: 8a β 3b + 6a = 14a β 3b.
ΠΡΠΈΠΌΠ΅Ρ 4: β(5b β2). ΠΡΠ²Π΅Ρ: β5b +2.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ, ΡΡΠΎΡΡΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ.
ΠΡΠΈ ΡΡΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ Π΄Π°Π΅Ρ ΠΏΠ»ΡΡ, Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ Π΄Π°Π΅Ρ ΠΌΠΈΠ½ΡΡ.
ΠΠ°Π½Π½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½Π΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ: a(b+c) = ab + ac.
ΠΡΠΈΠΌΠ΅Ρ 1: 8Γ(5 β 3) = 16. ΠΡΠ²Π΅Ρ: 8 Γ5 β 8 Γ3 = 16.
ΠΡΠΈΠΌΠ΅Ρ 2: aΓ(7 +2). ΠΡΠ²Π΅Ρ: aΓ7+aΓ2 = 7a + 2a = 9a.
ΠΡΠΈΠΌΠ΅Ρ 3: 8Γ(3b β6a). ΠΡΠ²Π΅Ρ: 8Γ3b β 8Γ6a = 24bβ48a
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΡΠΎΡΡΠ΅Π΅ Π²Π½ΡΡΡΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ, Π΄Π΅Π»ΠΈΡΡΡ Π½Π° Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ, ΡΡΠΎΡΡΠΈΠΉ ΠΏΠΎΡΠ»Π΅ ΡΠΊΠΎΠ±ΠΎΠΊ.
ΠΡΠΈΠΌΠ΅Ρ 1: (25β15):5. ΠΡΠ²Π΅Ρ: 25:5β15:5= 2.
ΠΡΠΈΠΌΠ΅Ρ 2: (β14a +10):2. ΠΡΠ²Π΅Ρ: β14a:2 +10:2 = β7a +5.
ΠΡΠΈΠΌΠ΅Ρ 3: (36b + 6a):6. ΠΡΠ²Π΅Ρ: 36b:6 + 6a:6 = 6b + a.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄Π²ΡΡ ΡΠΊΠΎΠ±ΠΎΠΊ
ΠΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΠ±ΠΊΠΈ Π½Π° ΡΠΊΠΎΠ±ΠΊΡ, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π²ΡΠΎΡΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, (c+d) Γ (aβb) = cΓ(aβb)+dΓ(aβb) = caβcb+daβdb
ΠΡΠΈΠΌΠ΅Ρ. Π Π°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ: (2βa) Γ (3aβ1).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
Π¨Π°Π³ 1. Π£Π±ΠΈΡΠ°Π΅ΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΡΠΊΠΎΠ±ΠΊΡ (ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ Π΅Π΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° Π²ΡΠΎΡΡΡ ΡΠΊΠΎΠ±ΠΊΡ): 2 Γ (3aβ1) β a Γ (3aβ1).
Π¨Π°Π³ 2. Π Π°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ: (2Γ3aβ 2Γ1) β (aΓ3aβaΓ1) = 2Γ3aβ 2Γ1 β aΓ3a + aΓ1.
Π¨Π°Π³ 3. ΠΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅: 6aβ2β3a2+a = 7aβ2β3a2
Π Π°ΡΠΊΡΡΡΠΈΠ΅ Π²Π»ΠΎΠΆΠ΅Π½Π½ΡΡ ΡΠΊΠΎΠ±ΠΎΠΊ
ΠΠ½ΠΎΠ³Π΄Π° Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠΎ ΡΠΊΠΎΠ±ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π»ΠΎΠΆΠ΅Π½Ρ Π² Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ. Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΊΡΡ Π·Π°Π΄Π°ΡΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΡΠ°ΡΠΊΡΡΡΡ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΡΠΊΠΎΠ±ΠΊΡ (ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠ°Π²ΠΈΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ), Π° ΠΏΠΎΡΠΎΠΌ Π²Π½Π΅ΡΠ½ΡΡ ΡΠΊΠΎΠ±ΠΊΡ.
ΠΡΠΈΠΌΠ΅Ρ 1. 7a + 2 Γ (5β (3a+b)).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
Π¨Π°Π³ 1. Π Π°ΡΠΊΡΠΎΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ ΡΠΊΠΎΠ±ΠΊΡ (Π½Π΅ ΡΡΠΎΠ³Π°Ρ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠ΅): 7a + 2 Γ (5 β (3a+b)) = 7a + 2 Γ (5 β 3a β b).
Π¨Π°Π³ 2. Π Π°ΡΠΊΡΠΎΠ΅ΠΌ Π²Π½Π΅ΡΠ½ΡΡ ΡΠΊΠΎΠ±ΠΊΡ: 7a + 2 Γ (5 β (3a+b)) = 7a + 2Γ5 β 2Γ3a β 2Γb.
Π¨Π°Π³ 3. Π£ΠΏΡΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅: 7a + 10 β 6a β 2b = a+10-2b.
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ Π² Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
ΠΡΠ»ΠΈ ΡΡΠΎΠΈΡ ΡΠΊΠΎΠ±ΠΊΠ° Π² Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ (n), ΡΠΎ ΡΡΠΎΠ±Ρ ΡΠ°ΡΠΊΡΡΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ, Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· (n ΡΠ°Π·).
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΠΏΡΠΈΠΌΠ΅ΡΠ΅ (a+b)2 = (a+b)Γ(a+b) Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ (a+b) Π΄Π²Π° ΡΠ°Π·Π°, Π΄Π°Π»Π΅Π΅ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΠΌ ΡΠΊΠΎΠ±ΠΊΠΈ, Π³Π΄Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π²ΡΠΎΡΠΎΠΉ ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. 6 ΠΊΠ»Π°ΡΡ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ°
Π Π°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠΈ
ΠΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ²:
Π¦Π΅Π»ΡΠ΅ ΡΠΈΡΠ»Π° β ΡΡΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°, Π½ΠΎΠ»Ρ ΠΈ ΡΠΈΡΠ»Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΌ.
ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠΈΡΠ»Π° β ΡΡΠΎ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π·Π½Π°ΠΊΠΎΠΌ ΠΈ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ Π² ΡΡΠΌΠΌΠ΅ Π΄Π°ΡΡ 0. Π§ΠΈΡΠ»ΠΎ 0 ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ ΡΠ°ΠΌΠΎΠΌΡ ΡΠ΅Π±Π΅.
1. ΠΠΈΠΊΠΎΠ»ΡΡΠΊΠΈΠΉ Π‘. Π. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. 6 ΠΊΠ»Π°ΡΡ. Π£ΡΠ΅Π±Π½ΠΈΠΊ Π΄Π»Ρ ΠΎΠ±ΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ // Π‘. Π. ΠΠΈΠΊΠΎΠ»ΡΡΠΊΠΈΠΉ, Π. Π. ΠΠΎΡΠ°ΠΏΠΎΠ², Π. Π. Π Π΅ΡΠ΅ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ Π΄Ρ. β Π.: ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅, 2017, ΡΡΡ. 258.
1. Π§ΡΠ»ΠΊΠΎΠ² Π. Π. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΡΡΡ.5-6 ΠΊΠ». // Π. Π. Π§ΡΠ»ΠΊΠΎΠ², Π. Π€. Π¨Π΅ΡΡΠ½ΡΠ², Π. Π€. ΠΠ°ΡΠ°ΠΏΠΈΠ½Π° β Π.: ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅, 2009, ΡΡΡ. 142.
2. Π¨Π°ΡΡΠ³ΠΈΠ½ Π. Π€. ΠΠ°Π΄Π°ΡΠΈ Π½Π° ΡΠΌΠ΅ΠΊΠ°Π»ΠΊΡ: 5-6 ΠΊΠ». // Π. Π€. Π¨Π°ΡΡΠ³ΠΈΠ½, Π. Π. Π¨Π΅Π²ΠΊΠΈΠ½ β Π.: ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅, 2014, ΡΡΡ. 95.
Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ
Π‘Π΅Π³ΠΎΠ΄Π½Ρ ΠΌΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ Π² Π΄Π²ΡΡ ΡΠ»ΡΡΠ°ΡΡ : ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ.
Π’Π°ΠΊΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ 4 β 9 β 2, ΡΠ°ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠΌΠΌΠΎΠΉ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΡΠΌΠΌΡ 4 + (β 9) + (β 2).
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ ΡΠ΅Π»ΡΡ ΡΠΈΡΠ΅Π», Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ·Π½Π°Π΅ΠΌ, ΠΊΠ°ΠΊΠΈΠ΅ Π΅ΡΡ Π²ΠΈΠ΄Ρ ΡΠΈΡΠ΅Π» ΡΡΡΠ΅ΡΡΠ²ΡΡΡ.
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ».
ΠΡΠ»ΠΈ ΡΡΠΌΠΌΠ° Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π° Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ», ΡΠΎ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈΡΠΊΠΎΠ±ΠΎΠΊ Π·Π½Π°ΠΊΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΎΡΡΠ°Π²Π»ΡΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ.
ΠΠΎΠ»ΡΠ·ΡΡΡΡ ΡΡΠΈΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎΠΌ, Π²ΡΠΏΠΎΠ»Π½ΠΈΠΌ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ ΡΠΊΠΎΠ±ΠΎΠΊ
+ (25 β 12 + 6) = 25 β 12 + 6
+ (β 31 + 29 β 15) = β 31 + 29 β 15
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ».
ΠΡΠ»ΠΈ ΡΡΠΌΠΌΠ° Π·Π°ΠΊΠ»ΡΡΠ΅Π½Π° Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡ, ΡΠΎ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ Π·Π½Π°ΠΊΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΠΌΠ΅Π½ΡΡΡ Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅.
β (Π° β b β Ρ) = β Π° + b + Ρ
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Β«ΠΌΠΈΠ½ΡΡΒ».
β (22 β 30 +19)= β 22 + 30 β 19
Π’Π΅ΠΏΠ΅ΡΡ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ ΡΡΠΎΠΈΡ Β«ΠΏΠ»ΡΡΒ».
ΠΡΠ»ΠΈ ΡΡΠΌΠΌΠ° Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«+Β», ΡΠΎ Π·Π½Π°ΠΊΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ,Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΎΡΡΠ°Π²Π»ΡΡΡ Π±Π΅Π·ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ.
β Π° + b β Ρ = + (β Π° + b β Ρ)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π·Π°ΠΊΠ»ΡΡΠΈΠΌ Π΅Π³ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠΎΡΡΠ°Π²ΠΈΠ² ΠΏΠ΅ΡΠ΅Π΄ ΡΠΊΠΎΠ±ΠΊΠΎΠΉ Β«ΠΏΠ»ΡΡΒ».
β 4 + 9 β 5 = + (β 4 + 9 β 5)
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π±ΡΠ΄Π΅Ρ ΡΡΠΎΡΡΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ».
ΠΡΠ»ΠΈ ΡΡΠΌΠΌΠ° Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«βΒ», ΡΠΎ Π·Π½Π°ΠΊΠΈ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ,Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΠΌΠ΅Π½ΡΡΡ Π½Π°ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅.
Π°β b + Ρ β d = β (β a + b β c + d)
ΠΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠΈ.
123 β 25 + 37= β (β 123 + 25 β 37)
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ:
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ°Π½Π΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»Π°.
β (620 β 29) + 31= β 620 + 29 + 31= β 620 + (29 + 31) =
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ:
Π‘Π½ΠΎΠ²Π° ΡΠΏΡΠΎΡΡΠΈΠΌ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
(8 β 75 β 600) β 8 β 75 = 8 β 75 β 600 β 8 β 75 =
= 8 β 75 + (β 600) + (β 8 β 75) = 8 β 75 + (β 8 β 75) + (β 600) =
= (8 β 75 + (β 8 β 75)) + (β 600) = (8 β 75 β 8 β 75) β 600 =
= 8 β (75 β 75) β 600 =8 β 0β 600 = 0 β 600 = β 600
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π° ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ, ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ Β«+Β» ΠΈΠ»ΠΈ Π·Π½Π°ΠΊ Β«βΒ», ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΠ°ΡΡΠΈΠ»ΠΈΡΡΡΠΏΡΠΎΡΠ°ΡΡ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΡ ΠΈΠ·ΡΡΠΈΠ»ΠΈ Ρ Π²Π°ΠΌΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²ΠΈΠ΄Ρ ΡΠΈΡΠ΅Π». ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ: