Что такое равномерное движение в физике 9 класс кратко
Что такое равномерное движение в физике 9 класс кратко
Прямолинейное движение тела — это движение, при котором тело движется по прямой линии в данной системе отсчёта.
Чтобы описать прямолинейное движение в выбранной системе отсчёта, необходимо в момент начала движения включить часы и измерять координату тела в различные моменты времени. Результаты измерений представляют в виде таблицы (табличный способ описания движения) или графика движения в осях: время — координата (графический способ описания движения).
Если известна графическая зависимость координаты тела от времени в виде непрерывной линии, то движение тела описано полностью, т. е. можно:
2. Равномерное движение
Прямолинейное движение тела называют равномерным, если тело за любые равные промежутки времени проходит равные расстояния в одном и том же направлении. Изменением координаты тела за промежуток времени от момента t1 до момента t2 называют разность х2 — х1 между конечным и начальным значениями координаты.
x = х0 + v • t,
где х0 — начальная координата тела, t — момент времени после начала движения, v — постоянная величина, равная изменению координаты тела за единицу времени, х — координата тела в момент времени t.
3. Скорость прямолинейного равномерного движения
Если тело движется равномерно прямолинейно, то физическую величину v, численно равную изменению его координаты за единицу времени, называют значением скорости равномерного прямолинейного движения. В СИ единица скорости — метр в секунду (м/с).
Скорость — векторная величина, которая характеризуется не только своим модулем, но и направлением. Если значение скорости положительно, то скорость направлена в положительном направлении оси X. Если же значение скорости отрицательно, то скорость направлена в отрицательном направлении оси X.
Конспект урока по физике в 7 классе «Прямолинейное равномерное движение».
Решение задач на равномерное движение в конспекте: «Задачи на движение».
Кинематика. Равномерное движение.
Если тело за любые равные промежутки времени проходит равные пути, его движение называется равномерным.
Равномерное движение встречается довольно редко. Например, почти равномерно движется Земля вокруг Солнца, проходя за год один оборот.
При равномерноем движении скорость не изменяется:
Равномерное движение происходит как по прямолинейной, так и по криволинейной траектории.
Равномерное движение тела описывается уравнением:
где s – путь, пройденный телом от некоторой точки, принятой за начало отсчета, t – время тела в пути, s0 – значение s в начальный момент времени t = 0.
Прямолинейным равномерным движением называют движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость прямолинейного равномерного движения – величина постоянная. Определяется как отношение перемещения точки к промежутку времени, в течение которого это перемещение произошло:
Модуль этой скорости – это перемещение тела, совершаемое за единицу времени.
Скоростью равномерного прямолинейного движении называют величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка:
Перемещение при равномерном прямолинейном движении (по оси Х) можно рассчитать по формуле:
где υx – проекция скорости на ось Х, откуда закон равномерного прямолинейного движения будет иметь вид:
Равномерное движение
Равномерное движение
Для кинематического описания движения расположим ось OХ вдоль направления движения. Для определения перемещения тела при равномерном прямолинейном движении достаточно одной координаты Х. Проекции перемещения и скорости на координатную ось можно рассматривать, как алгебраические величины.
В зависимости от направления оси и направления движения тела эта величина может быть как положительной, так и отрицательной. При прямолинейном и равномерном движении модуль перемещения тела совпадает с пройденным путем. Скорость равномерного прямолинейного движения определяется по формуле:
Математическое описание равномерного прямолинейного движения
Закон движения тела при равномерном прямолинейном движении описывается линейным алгебраическим уравнением.
Уравнение движения тела при равномерном прямолинейном движении
От точки x 1 до точки x 2 тело переместилось за две секунды. Перемещение тела составило три метра.
Зная это, можно найти скорость тела.
Есть еще один способ определения скорости: из графика ее можно найти как отношение сторон BC и AC треугольника ABC.
Аналогично вычисления проводятся для второго случая движения. Рассмотрим теперь новый график, изображающий движение с помощью отрезков прямых. Это так называемый кусочно-линейный график.
Отметим, что путь и перемещение не совпадают для движения, описываемого кусочно-линейным графиком. Например, в интервале времени от нуля до семи секунд тело прошло путь, равный 8 метрам. Перемещение тела при этом равно нулю.
Механическое движение
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Механическое движение
Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.
Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.
«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:
В совокупности эти три параметра образуют систему отсчета.
В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉
Прямолинейное равномерное движение
Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.
Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.
Мы можем охарактеризовать это движение следующими величинами.
Скалярные величины (определяются только значением)
Векторные величины (определяются значением и направлением)
Проецирование векторов
Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.
Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.
Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.
Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.
Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.
Скорость
→ →
V = S/t
→
V — скорость [м/с]
→
S — перемещение [м]
t — время [с]
Средняя путевая скорость
V ср.путевая = S/t
V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]
Задача
Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.
Решение:
Возьмем формулу средней путевой скорости
V ср.путевая = S/t
Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч
Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч
Уравнение движения
Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) = x0 + vxt
x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v