Что такое размножение клетки
Особенности процесса размножения: непрямое деление клеток и его фазы
Особенности процесса размножения
Как размножается клетка?
Образование эукариотических клеток связано с процессом удвоения, а после — деления генетического материла ядра (в ходе митоза или мейоза), а также с делением тела клетки или цитокинезом (не относится к клеткам, образующимся в результате слияния).
Жизнь и функционирование сформировавшихся один раз клеток длится до момента их следующего деления или гибели.
Не могут делиться эритроциты, нейроны и мышечные клетки.
Жизнь каждой клетки ограничена. По этой причине для длительного существования в многоклеточном организме должен происходить процесс образования новых клеток со скоростью гибели старых клеток.
Одно из самых важных явлений в организме — деление клеток.
Что такое деление клетки? Как происходит деление клетки?
Согласно клеточной теории, образование новых клеток происходит только из предыдущих. Это образование и называется научным термином «деление клеток»
Одноклеточные организмы зарождаются в результате образования зиготы и слияния гамет. Зигота делится достаточно интенсивно и образует миллиарды новых клеток, которые получают дифференциацию, растут и формируют ткани с органами.
Рост и обновление многих структур в многоклеточных организмах связаны с процессом размножения клеток — пролиферацией. После того как новый организм сформирован, клетки постепенно утрачивают способность размножаться. Периодически они делятся — это связано с необходимостью замещения погибших клеток, а также поддержания целостности тканей, органов и организма в целом.
Основа деления клеток — молекулярно-генетический механизм или репликация молекул ДНК.
Непрямое деление клеток
Определение митоза
В многоклеточном организме клетки возникают как результат деления (размножения) уже существующих клеток.
Митоз или непрямое деление — это непростой процесс деления ядра с последующим образованием двух дочерних ядер.
Чем характеризуется непрямое деление клетки? Приведем его примеры ниже.
В каждом из новых двух ядер содержится идентичный материнскому набор хромосом, между дочерними клетками происходит точное распределение хромосом с ДНК.
Процесс митоза — часть жизненного цикла клетки, основанный на пяти последовательных фазах.
Фазы митоза
Каждая фаза митоза отличается по длительности. Одна может заниматься несколько минут, а другая — сотни часов. Длительность фазы определяется типом клетки, тканями, активностью органов, физиологическим состоянием организма, разнообразными факторами внешней среды вроде влажности, освещения, температуры, химических веществ и др, а также внутренними факторами — гормонами, нейромедиаторами.
Пройдемся кратко по фазам митоза.
Профаза — начальная стадия митоза. В стадии профазы содержимое ядра клетки заметно меняется. Происходит скручивание, уплотнение длинных волокон хроматина, образование ими петель и спиралей. Если посмотреть в световой микроскоп, то они будут иметь вид отдельных хромосом.
Каждая хромосома на этой стадии состоит из двух хроматид — они находятся рядом одна с другой по всей длине. Происходит отдаление пар центриолей в направлении к противоположным концам клетки, в результате чего образуются два полюса деления. Эти структуры будут участвовать в процессе организации микротрубочек веретена деления.
Начало прометафазы можно охарактеризовать внезапной (в течение 20-30 секунд) дезинтеграцией ядерной оболочки на небольшие везикулы — они очень похожи на везикулы эндоплазматической сети. За счет этого микротрубочка веретена деления получает возможность попасть в ядро. Происходит смешение цитоплазмы и кариоплазмы. Далее происходит еще большее уплотнение хромосом и образование на их центромерах кинетохор — они представляют собой специальные белки, от которых отходят микротрубочки.
Группы миктротрубочек веретена деления вступают во взаимодействие с кинетохорными микротрубочками — благодаря этому хромосомы могут двигаться. Особенностью кинетохорных миктротрубочек является то, что они направлены в разные стороны от двух сестринских хроматид. Поэтому они могут тянуть их в разные стороны, задавая, тем самым, движению хромосом определенное направление.
Клетка находится в стадии метафазы, когда хромосомы располагаются в экваториальной плоскости. Хромосомы, сгруппированные таким способом, называют метафазной пластинкой. В таком положении они находятся благодаря натяжению микротрубочек. Позже присоединенные к кинетохорам микротрубочки начинают растягивать хромосому в разные стороны. Как результат — происходит отделение дочерних хроматид одна от другой. Метафаза обеспечивает хромосомам упорядоченное состояние и четкое строение, поэтому в этой фазе они хорошо видны в световой микроскоп.
На стадии метафазы проводятся исследования на кариотип.
Окончание фазы связано с завершением репликации центромерного участка ДНК и рассоединением хроматид.
Когда наступает анафаза, микротрубочки веретена деления растягивают хроматиды каждой хромосомы одна от другой и перемещают их в противоположные части клетки. Движение хроматид осуществляется с одинаковой скоростью. В дочерних анафазных хромосомах, которые раньше были хроматидами метафазной хромосомы, находится по одной молекуле ДНК.
Эта молекула имеет палочкообразную форму и изгиб около центромеры. Расхождение анафазных хромосом происходит одновременно и достаточно быстро. По завершении анафазы в разных частях поделившейся клетки образуется два полных и равноценных набора хромосом.
Генетическая формула наборов — 2n2c.
На стадии телофазы наборы хромосом располагаются на противоположных концах веретена. Само веретено начинает распадаться. Вокруг каждой группы хромосом происходит слияние везикул и образование новых ядерных оболочек. Осуществляется раскручивание наследственного материала хромосом до состояния хроматина (хроматин свойственен интерфазе). Вновь появляются ядрышки. По завершении всех изменений процесс митоза заканчивается. Образованные ядра вступают в начало следующего клеточного цикла.
Биологическое значение митоза заключается в точном и равномерном распределении генетического наследственного материала между дочерними клетками.
Значение процесса размножения клеток
Размножение или воспроизведение себе подобных — важное свойство всех живых организмов, включая бактерий.
Благодаря этому процессу обеспечивается непрерывное существование во времени всех видов растений и животных, поддерживается их численность и наследственность между поколениями. Возникновение новых клеток возможно только путем деления или размножения уже существующих.
Процесс деления клетки — это то, что определяет рост, индивидуальное развитие и непрерывное самообновление тканей многоклеточных организмов. Поддержание жизни особей многоклеточных организмов обусловлено именно размножением клетки, потому что клетки живут гораздо меньше, чем отдельные особи.
Деление клеток — залог размножения и индивидуального развития организма.
Мы рассмотрели процесс деления клетки кратко.
Жизненный цикл клетки. Хромосомный набор клетки. Деление клеток.
Совокупность хромосом, содержащихся в ядре, называется хромосомным набором. Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.
Число (диплоидный набор) хромосом у некоторых видов растений и животных
Пшеница твёрдая | 28 | Гидра | 32 |
Пшеница мягкая | 42 | Дождевой червь | 36 |
Рожь | 14 | Таракан | 48 |
Кукуруза | 20 | Пчела | 16 |
Подсолнечник | 34 | Дрозофила | 8 |
Картофель | 48 | Кролик | 44 |
Огурец | 14 | Шимпанзе | 48 |
Яблоня | 34 | Человек | 46 |
Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом. Хромосомы, принадлежащие к одной паре, называются гомологичными. Одна из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными. Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.
Деление клеток
Хромосомный набор
Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.
Соматические и половые клетки
Тип | Хромосомный набор | Характеристика |
Соматические | 2n | Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными. |
Половые | 1n | Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы. |
Клеточный цикл
Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).
Интерфаза — подготовка клетки к делению — состоит из трёх периодов.
Периоды интерфазы
Периоды | Число хромосом и хроматид | Процессы |
Пресинтетический (G1) | 2n2c | Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления. |
Синтетический (S) | 2n4c | Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды. |
Постсинтетический (G2) | 2n4c | Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли. |
Деление эукариотических клеток
Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:
Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.
Митоз
Митоз — тип клеточного деления, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке. В результате митоза из одной диплоидной клетки образуется две диплоидные, генетически идентичные материнской.
Митоз состоит из четырёх фаз.
Фазы митоза
Биологическое значение митоза:
Мейоз
Мейоз — тип клеточного деления, сопровождающийся редукцией числа хромосом. В результате мейоза из одной диплоидной клетки образуется четыре гаплоидных, генетически отличающиеся от материнской. В ходе мейоза происходит два клеточных деления (первое и второе мейотические деления), причём удвоение числа хромосом происходит только перед первым делением.
Как и митоз, каждое из мейотических делений состоит из четырёх фаз.
Фазы мейоза
Фазы | Число хромосом и хроматид | Процессы |
Профаза I | 2n4c | Происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга. |
Метафаза I | 2n4c | Происходят процессы, аналогичные процессам метафазы митоза. |
Анафаза I | 1n2c | В отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой. |
Телофаза I | 1n2c | Образуются две клетки с гаплоидным набором. |
Интерфаза | 1n2c | Короткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается. |
Профаза II | 1n2c | Аналогичны процессам во время митоза. |
Метафаза II | 1n2c | Аналогичны процессам во время митоза. |
Анафаза II | 1n1c | Аналогичны процессам во время митоза. |
Телофаза II | 1n1c | Аналогичны процессам во время митоза. |
Биологическое значение мейоза:
Деление прокариотических клеток
У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация. При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».