Что такое реализация случайной величины
Реализация случайной величины
Случа́йный экспериме́нт (случайное испытание, случайный опыт) — математическая модель соответствующего реального эксперимента, результат которого невозможно точно предсказать. Математическая модель должна удовлетворять требованиям:
, причем
— наблюдаемый результат.
— относительная частота реализаций эксперимента.
Точное описание природы случайного эксперимента влечет определение элементарных исходов, случайных событий и их вероятности, случайных величин и т. п.
Полезное
Смотреть что такое «Реализация случайной величины» в других словарях:
Реализация случайной функции — Случайный процесс (случайная функция) в теории вероятностей семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или пространства. Содержание 1 Определение 2 Терминология 3 Классификация … Википедия
ГОСТ 21878-76: Случайные процессы и динамические системы. Термины и определения — Терминология ГОСТ 21878 76: Случайные процессы и динамические системы. Термины и определения оригинал документа: Cross power spectral density function of stationary dependent random processes Определения термина из разных документов: Cross power… … Словарь-справочник терминов нормативно-технической документации
функция — 2.1 функция (function): Реализация в программе алгоритма, по которому пользователь или программа могут частично или полностью выполнять решаемую задачу. Примечания 1 Пользователю нет необходимости вызывать функцию (например, автоматическое… … Словарь-справочник терминов нормативно-технической документации
Выборка по значимости — (Importance Sampling, далее ВЗ) один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой либо величины методом Монте Карло. Идея ВЗ базируется на наблюдении, что некоторые … Википедия
Случайный сигнал — Случайные сигналы сигналы, мгновенные значения которых (в отличие от детерминированных сигналов) не известны, а могут быть лишь предсказаны с некоторой вероятностью, меньшей единицы. Характеристики таких сигналов являются статистическими, то есть … Википедия
НАИМЕНЬШИХ КВАДРАТОВ МЕТОД — один из методов ошибок теории для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближенного представления заданной функции другими (более простыми) функциями и часто оказывается … Математическая энциклопедия
Наименьших квадратов метод — один из методов ошибок теории (См. Ошибок теория) для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Н. к. м. применяется также для приближённого представления заданной функции другими (более простыми)… … Большая советская энциклопедия
КРИТИЧЕСКАЯ ОБЛАСТЬ — часть выборочного пространства такая, что попадание в нее наблюденного значения случайной величины, с распределением к рой связана проверяемая гипотеза, влечет отказ от этой гипотезы. Пусть нужно проверить гипотезу Н 0 о распределении случайной… … Математическая энциклопедия
Выборка по уровням — Связать? На эту статью не ссылаются другие статьи Википедии … Википедия
Реализация случайной функции
Случа́йный проце́сс (случайная функция) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или пространства.
Содержание
Определение
Пусть дано вероятностное пространство . Параметризованное семейство
случайных величин
,
где T произвольное множество, называется случайной функцией.
Терминология
Данная классификация нестрогая. В частности термин случайный процесс часто используется как безусловный синоним термина случайная функция.
Классификация
Замечание
Примеры
является случайным процессом.
См. также
Ссылки
Источники
Полезное
Смотреть что такое «Реализация случайной функции» в других словарях:
Математическая модель — 7. Математическая модель Модель Система соотношений между параметром оптимизации и факторами, а также ограничениями, накладываемыми на них Источник: РДМУ 109 77: Методические указания. Методика … Словарь-справочник терминов нормативно-технической документации
функция — 2.1 функция (function): Реализация в программе алгоритма, по которому пользователь или программа могут частично или полностью выполнять решаемую задачу. Примечания 1 Пользователю нет необходимости вызывать функцию (например, автоматическое… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 21878-76: Случайные процессы и динамические системы. Термины и определения — Терминология ГОСТ 21878 76: Случайные процессы и динамические системы. Термины и определения оригинал документа: Cross power spectral density function of stationary dependent random processes Определения термина из разных документов: Cross power… … Словарь-справочник терминов нормативно-технической документации
Ипотека — (Mortgage) Определение ипотеки, возникновение и регулирование ипотеки Информация об определении ипотеки, возникновение и регулирование ипотеки Содержание Содержание Основания возникновения ипотечного кредита и ее регулирование Ипотека в силу… … Энциклопедия инвестора
Выборка по значимости — (Importance Sampling, далее ВЗ) один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой либо величины методом Монте Карло. Идея ВЗ базируется на наблюдении, что некоторые … Википедия
Обнаружение с использованием оптимальной фильтрации — Содержание 1 5.6. Обнаружение с использованием оптимальной фильтрации 1.1 5 … Википедия
Обработка исключений — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставив сноски, внести более точные указания на источники … Википедия
Оптовые запасы — (Wholesale Inventories) Определение оптовых запасов, торговые и складские запасы Информация об определении оптовых запасов, торговые и складские запасы Содержание Содержание Виды запасов и их характеристики Торговые и складские запасы Принципы… … Энциклопедия инвестора
Макроэкономическая статистика — (Macroeconomic statistics) Понятие макроэкономической статистики, виды статистических показателей Информация о понятии макроэкономической статистики, виды статистических показателей Содержание >>>>>>>>>>>> … Энциклопедия инвестора
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
Начала статистики, понятие «реализации» случайной величины
Еще, например, в учебниках по статистике приводят определение случайной выборки: «Последовательность наблюдений называется случайной выборкой объема
, если
получены как независимые реализации некоторой случайной величины
с распределением
. При этом говорят, что
есть выборка из генеральной совокупности
«.
Разъясните, пожалуйста, что всё это значит. Откуда берутся какие-то случайные величины, и где они определены?
Больше всего меня удручает тот факт, что такой оборот появляется везде, и нигде не объясняется. Заговор?
Заслуженный участник |
Заслуженный участник |
Последний раз редактировалось Anton_Peplov 23.04.2015, 00:27, всего редактировалось 3 раз(а).
Заслуженный участник |
Заслуженный участник |
Заслуженный участник |
Заслуженный участник |
Последний раз редактировалось Anton_Peplov 23.04.2015, 02:38, всего редактировалось 1 раз.
Тогда, действительно, моя изначальная фраза не точна (или неверна, как Вам больше нравится).
Последний раз редактировалось Александрович 23.04.2015, 03:20, всего редактировалось 2 раз(а).
Заслуженный участник |
Это называется «независимыми копиями» (или как-нибудь ещё, но никак не реализациями) данной случайной величины. Последовательность же чисел (значений случайной величины, или реализаций данного набора с.в.) не умеет никуда по вероятности сходиться. Усиленный ЗБЧ утверждает сходимость средних для почти всех реализаций, но не для какой конкретной.
Вы собираетесь бросить точку на отрезок. Потом ещё. И ещё. Результат каждого такого эксперимента в отдельности будет случайной величиной с равномерным распределением. Определённой на (с соответствующими сигма-алгеброй событий и вероятностью) как
.
Набор определён на
-мерном кубике
. Этот набор возникает при выборе точки из этого кубика наудачу. Для всякой (заранее взятой, фиксированной, конкретной etc etc) точки
значение
будет уже вектором из чисел, т.е. реализацией данной выборки (данного набора случайных величин).
Есть учебники по матстатистике, где слово «реализация» не употребляется ни разу. Боровков, например.
Благодарю всех за ответы, но я только больше запутался.
Можно отвлечься от примера с отрезком (хотя, по видимому, он совершенно типичный), а обратиться к этакой более «прикладной» статистике: изучать, к примеру, зарплаты людей в уездном городе . В таком случае у нас есть случайная величина
, определенная на множестве жителей: функция, делающая из человека его зарплату. Теперь сделаем выборку объёма
: просто случайным образом ткнём пальцем на
понравившихся нам, или не очень, жителей. В
% учебников по статистике напишут, что мы располагаем
случайными величинами. Откуда они берутся и как они связаны с
?
Заслуженный участник |
Результат будет числом, являющимся реализацией случайной величины с равномерным распределением.
А вообще, удобно представлять себе ситуацию так:
Полезно отметить, что если потом в качестве выбрать
, то на это новое пространство исходов можно перенести всю ту же идеологию. Иными словами, забыть про
и считать, что Бог напрямую играет с числами
. Тогда обычные числовые функции можно будет рассматривать как случайные величины. Это так называемое индуцированное случайной величиной
вероятностное пространство.
Определение случайного процесса. Реализация, сечение случайного процесса
1 Определение случайного процесса.
Реализация, сечение случайного процесса
На практике встречаются такие случайные величины, которые в процессе одного опыта непрерывно изменяются в зависимости от времени или каких-нибудь других аргументов. Например, ошибка сопровождения самолёта радиолокатором не остаётся постоянной, а непрерывно изменяется со временем. В каждый момент она случайна, но её значение в разные моменты времени при сопровождении одного самолёта различны. Другими примерами являются: угол упреждения при непрерывном прицеливании по движущейся цели; ошибка радиодальномера при непрерывном измерении меняющейся дальности; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения; флюктуационные (дробовые и тепловые) шумы в радиотехнических устройствах и так далее. Такие случайные величины называются случайными функциями. Характерной особенностью таких функций является то, что вид их до проведения опыта в точности указать не возможно. Случайная функция и случайная величина относятся друг к другу так же, как функция и постоянная величина, рассматриваемые в математическом анализе.
Определение 1. Случайная функция – это функция, которая каждому исходу опыта ставит в соответствие некоторую числовую функцию, то есть отображение пространства Ω в некоторое множество функций (рисунок 1).
Определение 2. Случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, неизвестно заранее – какой именно.
Конкретный вид, принимаемый случайной функцией в результате опыта, называется реализацией случайной функции.
В силу непредсказуемости поведения изобразить случайную функцию в общем виде на графике не представляется возможным. Можно лишь записать её конкретный вид – то есть её реализацию, полученную в результате проведения опыта. Случайные функции, как и случайные величины, принято обозначать большими буквами латинского алфавита X(t), Y(t), Z(t), а их возможные реализации – соответственно x(t), y(t), z(t). Аргумент случайной функции t в общем случае может быть произвольной (не случайной) независимой переменной или совокупностью независимых переменных.
Случайные функции встречаются в любом случае, когда имеем дело с непрерывно работающей системой (системой измерения, управления, наведения, регулирования), при анализе точности работы системы приходится учитывать наличие случайных воздействий (полей); температура воздуха в различных слоях атмосферы рассматривается как случайная функция высоты H; положение центра масс ракеты (его вертикальная координата z в плоскости стрельбы) является случайной функцией от его горизонтальной координаты x. Это положение в каждом опыте (пуске) при одних и тех же данных наводки всегда несколько иное и отличается от теоретически рассчитанного.
Зафиксируем некоторое значение аргумента t. Проведём на расстоянии
t = t0 прямую, параллельную оси ординат (рисунок 3). Эта прямая пересечёт реализации в каких-то точках.
Определение. Множество точек пересечения реализаций случайной функции с прямой t = t0 называется сечением случайной функции.
Очевидно, сечение представляет собой некоторую случайную величину, возможные значения которой представляют собой ординаты точек пересечения прямой t = t0 с реализациями xi(t) ( i= ).
Таким образом, случайная функция совмещает в себе черты случайной величины и функции. Если зафиксировать значение аргумента, она превращается в обычную случайную величину; в результате каждого опыта она превращается в обычную (неслучайную) функцию.
Например, если провести два сечения t = t1 и t = t2, то получается две случайные величины X(t1) и X(t2), которые в совокупности образуют систему двух случайных величин.
2 Законы распределения
Случайная функция непрерывно изменяющегося аргумента на любом сколь угодно малом интервале его изменения равноценна бесконечному, несчётному множеству случайных величин, которые даже невозможно перенумеровать. Поэтому для случайной функции невозможно обычным путём определить закон распределения, как для обычных случайных величин и случайных векторов. Для изучения случайных функций применяют подход, основанный на фиксации одного или нескольких значений аргумента t и изучении получающихся при этом случайных величин, то есть случайные функции изучаются в отдельных сечениях, соответствующих различным значениям аргумента t.
Фиксируя одно значение t1 аргумента t, рассмотрим случайную величину X1=X(t1). Для этой случайной величины можно определить обычным путём закон распределения, например, функцию распределения F1(x1, t1), плотность вероятности f1(x1,t1). Эти законы называются одномерными законами распределения случайной функции X(t). Особенностью их является то, что они зависят не только от возможного значения x1 случайной функции X(t) при t = t1, но и от того, как выбрано значение t1 аргумента t, то есть законы распределения случайной величины X1=X(t1) зависят от аргумента t1 как от параметра.
Содержание:
Величина называется случайной, если она принимает свои значения в зависимости от исходов некоторого испытания (опыта), причем для каждого элементарного исхода она имеет единственное значение. Случайная величина называется дискретной (в узком смысле), если множество всех возможных значений ее конечно.
Геометрически множество всех возможных значений дискретной случайной величины представляет конечную систему точек числовой оси.
Пусть X — дискретная случайная величина, возможными и единственно возможными значениями которой являются числа
вероятности этих значений (т. е. есть вероятность события, состоящего в том, что X принимает значение
).
События , очевидно, образуют полную группу событий, поэтому
Определение: Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
В простейших случаях закон распределения дискретной случайной величины X удобно задавать таблицей:
Здесь первая строка таблицы содержит все возможные значения случайной величины, а вторая — их вероятности.
Заметим, что таблицу значений дискретной случайной величины X, если это целесообразно, формально всегда можно пополнить конечным набором любых чисел, считая их значениями X с вероятностями, равными нулю.
Пример:
В денежной лотерее разыгрывается 1 выигрыш в 1000 руб., 10 выигрышей по 100 руб. и 100 выигрышей по 1 руб. при общем числе билетов 10 000. Найти закон распределения случайного выигрыша X для владельца одного лотерейного билета.
Решение:
Здесь возможные значения для X есть
Вероятности их соответственно будут
Закон распределения для выигрыша X может быть задан таблицей:
Число появлений т события А при независимых испытаниях можно рассматривать как случайную величину X со значениями
Закон распределения этой величины дается биномиальной формулой
где <биномиальное распределение).
В частности, если р мало и п велико, причем — ограниченная величина, заключенная между двумя фиксированными положительными числами, то приближенно справедливо распределение Пуассона
Определение случайной величины
Определение 29. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.
Случайные величины (СВ) обозначаются большими буквами X, Y.
Случайные величины характеризуются своими возможными значениями, которые обозначаются маленькими буквами, соответствующими случайной величине: х,у.
Определение 30. Случайные величины, принимающие только отдаленные друг от друга возможные значения, которые можно заранее перечислить, называются дискретными случайными величинами (ДСВ).
Примеры ДСВ. 1) В приведенном выше примере СВ X. 2) Случайная величина Z- число вызовов скорой помощи за сутки. Ее возможные значения .
Определение 32. Случайная величина X называется характеристической случайной величиной события А.
Примеры перехода от событий к случайным величинам
Если происходит ряд таких опытов, то общее число появлений события А равно сумме характеристических случайных величин X события А во всех опытах.
Законы распределения случайных величин
Для описания случайной величины (т.е. для возможности сказать, как часто следует ожидать появления тех или других возможных значений случайной величины в результате повторения опыта в одних и тех же условиях) необходимо знать закон распределения вероятностей случайной величины.
Определение 33. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Рассмотрим дискретную случайную величину (ДСВ) Xс возможными значениями . Каждое из этих значений возможно, но не достоверно, и X может принять каждое из них с некоторой вероятностью.
Обозначим . Т.к. несовместные события образуют полную группу, то
— сумма вероятностей всех возможных значений ДСВ.
Эта суммарная вероятность каким-то образом распределена между отдельными значениями ДСВ. Задать это распределение, т.е. указать, какой вероятностью обладает каждое из событий, значит установить закон распределения СВ.
Говорят, что СВ подчинена данному закону распределения.
Формы закона распределения ДСВ
1. Простейшей формой задания закона распределения является таблица, называемая рядом распределения ДСВ.
Для элементов нижней строки должно выполняться условие: .
Механическая интерпретация ряда распределения ДСВ: Распределение единичной массы в нескольких изолированных точках по оси (Ох). (В отдельных точках
сосредоточены соответственно массы
, сумма которых равна 1.)
Пример №1
Решение.
Проверка: .
Пример №2
Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывастся 5 очков. Построить ряд и многоугольник распределения числа выбитых очков.
Решение.
Возможные значения X: = 0 (0 очков),
= 1 (5 очков),
= 2 (10 очков),
= 3 (15 очков).
По формуле Бернулли найдем вероятности этих возможных значений:
Ряд распределения имеет вид:
Проверка: .
Замечание. Ряд распределения является удобной формой представления закона распределения для ДСВ с конечным числом возможных значений. Однако эта характеристика не универсальна, так как ряд или многоугольник нельзя построить для непрерывной случайной величины (НСВ). Действительно, НСВ имеет бесчисленное множество возможных значений, которые сплошь заполняют некоторый промежуток, и перечислить их в какой-нибудь таблице нельзя.
Кроме того (это будет доказано позднее) каждое отдельное значение НСВ обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для НСВ не существует ряда распределения в том смысле, в каком он существует для ДСВ.
Однако различные области возможных значений НСВ все же не являются одинаково вероятными, и для НСВ существует «распределение вероятностей», хотя и не в том смысле, как для ДСВ.
В силу этого, желательно иметь такую характеристику распределения вероятностей, которая была бы применима для самых разнообразных случайных величин.
Пример №3
Вероятности того, что студент сдаст экзамены в сессию по математическому анализу и органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х − числа экзаменов, которые сдаст студент.
Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:
Найдем вероятности этих значений. Обозначим события:
– студент сдаст экзамен по математическому анализу;
– студент не сдаст экзамен по математическому анализу;
– студент сдаст экзамен по органической химии;
– студент не сдаст экзамен по органической химии.
По условию:
Итак, закон распределения случайной величины Х задается таблицей:
Пример №4
Дискретная случайная величина Х задана законом распределения:
Найти функцию распределения F(x) и построить её график, а также
Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то
Найдем функцию распределения
Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Если то F(х)=0, так как на промежутке (− ∞; х) нет ни одного значения данной случайной величины;
Если то F(х) = Р(Х = −1) = 0,1, так как в промежуток (−∞; х) попадает только одно значение
= −1;
Если
так как в промежуток (−∞; х) попадают два значения
Если то
так как в промежуток (−∞; х) попадают три значения
Если то
=0,1+0,1+0,3+0,2=0,7, так как в промежуток (−∞; х) попадают четыре значения
Если то F(х)=Р(Х = −1)+Р(Х = 0)+Р(Х = 1)+Р(Х = 2)+Р(Х = 3) =
=0,1+0,1+0,3+0,2+0,3=1, так как в промежуток (−∞; х) попадают пять значений
Итак,
Изобразим функцию F(x) графически (рис. 4.3):
Найдем числовые характеристики случайной величины:
Пример №5
Составить закон распределения случайной величины Х − числа выпадений пятерки при трех бросаниях игральной кости. Вычислить этой величины.
Решение: Испытание состоит в одном бросании игральной кости. Так как кость бросается 3 раза, то число испытаний n = 3.
Вероятность события А − «выпадение пятёрки» в каждом испытании одна и та же и равна 1/6, т.е. где
− «выпадения не пятёрки».
Случайная величина Х может принимать значения: 0;1;2;3.
Вероятность каждого из возможных значений Х найдём по формуле Бернулли:
Таким образом закон распределения случайной величины Х имеет вид:
Контроль: 125/216+75/216+15/216+1/216=1.
Найдем числовые характеристики случайной величины Х:
Пример №6
Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:
б) хотя бы одна бракованная.
Решение: Число n = 1000 велико, вероятность изготовления бракованной детали р = 0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:
Найдем =np=1000·0,002=2.
а) Найдем вероятность того, что будет 5 бракованных деталей среди отобранных (m = 5):
б) Найдем вероятность того, что будет хотя бы одна бракованная деталь среди отобранных.
Событие А − «хотя бы одна из отобранных деталей бракованная» является противоположным событию— «все отобранные детали не бракованные». Следовательно,
Отсюда искомая вероятность равна:
Математическое ожидание
Определение: Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных ее значений на их вероятности.
Если есть (полный) набор всех значений дискретной случайной величины
— соответствующие им вероятности, то, обозначая буквой М математическое ожидание, будем иметь
Очевидно, математическое ожидание случайной величины X не изменится, если таблицу значений ее пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю.
Математическое ожидание М (X) случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины X.
Пример №7
Найти математическое ожидание выигрыша X.
Решение:
Пользуясь помещенной там таблицей, имеем
Как нетрудно сообразить, М(Х) = 21 коп. есть «справедливая» цена билета.
Замечание 1. Отдельные слагаемые суммы (1) представляют собой математические ожидания случайных величин
, возможными значениями которых являются
с вероятностями соответственно
.
Замечание 2. Пусть —соответственно наименьшие и наибольшие возможные значения случайной величины X. Имеем
Таким образом, математическое ожидание случайной величины является некоторым ее средним значением.
Замечание 3. Математическое ожидание числа появлений события А при одном испытании совпадает с вероятностью этого события Р(А) = р.
Действительно, пусть X — число появлений события А в данном испытании. Случайная величина X может принимать два значения: (событие А наступило) с вероятностью
и
(событие А не наступило) с вероятностью
Основные свойства математического ожидания
Укажем важнейшие свойства математического ожидания. Доказательства будут проведены для дискретных случайных величин. Однако соответствующие теоремы справедливы также и для непрерывных случайных величин, поэтому при формулировках этих теорем мы не будем упоминать, что рассматриваемые случайные величины дискретны.
Нам понадобится выяснить смысл арифметических операций и т. п., где X и У — дискретные случайные величины. Нетрудно дать соответствующие определения.
Например, под суммой X + У понимается случайная величина Z, значениями которой являются допустимые суммы — все возможные значения соответственно случайных величин X и У, причем соответствующие вероятности равны
Если какая-нибудь из комбинаций невозможна, то условно полагают
; это не отразится на математическом ожидании суммы.
Аналогично определяются остальные выражения.
Различают также независимые и зависимые случайные величины. Две случайные величины считаются независимыми, если возможные значения и закон распределения каждой из них один и тот же при любом выборе допустимых значений другой. В противном случае они называются зависимыми. Несколько случайных величин называются взаимно независимыми, если возможные значения и законы распределения любой из них не зависят от того, какие возможные значения приняли остальные случайные величины.
Теорема: Математическое ожидание постоянной величины равно этой постоянной, т. е. если С — постоянная величина, то
Доказательство: Постоянную величину С можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение С с вероятностью р = 1. Поэтому
Теорема: Математическое ожидание суммы двух (или нескольких) случайных величин равно сумме математических ожиданий этих величин, т. е. если X и У — случайные величины, то
Как было отмечено выше, все комбинации
можно считать допустимыми, причем если сумма
невозможна, то полагаем
.
Воспользовавшись очевидными свойствами суммы: 1) сумма не зависит от порядка слагаемых и 2) множитель, не зависящий от индекса суммирования, можно выносить за знак суммы, из (4) получим
Сумма представляет собой вероятность события, состоящего в том, что случайная величина X принимает значение xt при условии, что случайная величина У принимает одно из своих возможных значений (что достоверно); это сложное событие, очевидно, эквивалентно тому, что X принимает значение xt и поэтому
Тогда из формулы (5) получаем
что и требовалось доказать.
2) Для нескольких случайных величин, например для трех X, У и Z, имеем
Следствие. Если С — постоянная величина, то
Теорема: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т. е.
где X и У — независимые случайные величины.
Доказательство: Пусть
— законы распределения соответственно случайных величин X и У. Так как X и У независимы, то полный набор значений случайной величины XY состоит из всех произведений вида
, причем вероятности этих значений по теореме умножения для независимых событий равны
.
что и требовалось доказать.
Следствие 1. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.
Действительно, например, для трех взаимно независимых случайных величин X, У, Z имеем
Следствие 2. Постоянный множитель можно выносить за знак математического ожидания.
Если С — постоянная величина, а X — любая случайная величина, то, учитывая, что С и X независимы, на основании теоремы 1 получим
Следствие 3. Математическое ожидание разности любых двух случайных величин X и Y равно разности математических ожиданий этих величину т. е.
Действительно, используя теорему о сумме математических ожиданий и следствие 2, получим
Дисперсия
Теорема: Для любой случайной величины X математическое ожидание ее отклонения равно нулю, т. е.
Локазательство. Действительно, учитывая, что М(Х) — постоянная величина, имеем
Определение: Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения этой величины от ее математического ожидания.
Отсюда, обозначая дисперсию буквой D, для случайной величины X будем иметь
Очевидно, что дисперсия случайной величины постоянна, т. е. является числовой характеристикой этой величины.
Если случайная величина X имеет закон распределения , то, обозначая для краткости
, из формулы (1) будем иметь
Пример №8
Пусть закон распределения случайной величины задан таблицей:
Определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратичное отклонение . Имеем
Теорема: Дисперсия случайной величины равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания, т. е.
Доказательство: Используя основные теоремы о математических ожиданиях случайных величин, имеем
Теорема: Дисперсия постоянной величины равна нулю. Действительно, если С — постоянная величина, то М(С) = С и, следовательно,
Результат этот очевиден, так как постоянная величина изображается одной точкой на числовой оси Ох и не имеет рассеяния.
Теорема: Дисперсия суммы двух независимых случайных величин X и Y равна сумме дисперсий этих величин, т. е.
Доказательство: Так как
и, следовательно, справедлива формула (5).
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин.
Следствие 2. Если С — постоянная величина, то
Таким образом, случайные величины X и X + С имеют одинаковую меру рассеяния.
Теорема: Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат, т. е.
Доказательство: Если С — постоянный множитель, то в силу теоремы 2 имеем
Таким образом, рассеяние величины СХ в С 2 раз больше рассеяния величины X.
Следствие. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин, т. е. если случайные величины X и У независимы, то
Действительно, на основании теорем 4 и 5 имеем
Математическое ожидание и дисперсия случайной величины являются ее основными числовыми характеристиками.
Пример №9
Определить математическое ожидание и дисперсию для числа X появления события А при п независимых испытаниях, в каждом из которых вероятность события Р(А) = р постоянна.
Случайная величина X принимает значения и распределена по биномиальному закону
где
Величину X можно рассматривать как сумму независимых случайных величин
где — число появлений события А в
-м испытании. Случайная величина X, принимает лишь два значения: 1, если событие А появилось в i-м испытании, и 0, если событие А не произошло в i-м испытании. Вероятности этих значений
. Отсюда
. Отсюда, используя теорему о математическом ожидании суммы, будем иметь
Таким образом, математическое ожидание числа появлений события А в условиях схемы Бернулли совпадает со «средним числом» появления этого события в данной серии испытаний. Для дисперсии случайной величины X, получаем
Отсюда по свойству дисперсии суммы независимых случайных величин (теорема) будем иметь
Поэтому среднее квадратичное отклонение (стандарт)
Формулы (8) и (9) дают математическое ожидание и дисперсию для биномиального закона распределения.
Замечание. Теперь становится понятным смысл случайной величины
в приближенных формулах Лапласа, а именно, t представляет собой отклонение числа появлений события А от его математического ожидания, измеренное в стандартах (так называемое нормированное отклонение).
Рассмотрим п дискретных попарно независимых случайных величин , дисперсии
которых равномерно ограничены:
Эти величины, возможно, имеют значительный разброс, однако их среднее арифметическое
ведет себя достаточно «кучно».
А именно, при указанных выше условиях имеет место замечательная теорема:
Теорема Чебышева: Для любого положительного > 0 вероятность неравенства
сколь угодно близка к 1, если число случайных величин п достаточно велико, т. е.
Теорема Чебышева находит применение в теории ошибок, статистике и т. п.
Непрерывные случайные величины. Функция распределения
Случайную величину X будем называть непрерывной, если все ее возможные значения целиком заполняют некоторый конечный или бесконечный промежуток числовой оси. Предполагается, что при каждом испытании случайная величина X принимает одно и только одно значение
. Заметим, что дискретные и непрерывные случайные величины не исчерпывают все типы случайных величин.
Для характеристики непрерывной случайной величины X вводят функцию распределения
называемую интегральным законом распределения.
Если значения случайной величины X рассматривать как точки числовой оси Ох, то Ф(х) представляет собой вероятность события, состоящего в том, что наблюдаемое значение случайной величины X принадлежит интервалу , т. е. находится левее точки х. Этот интервал зависит от правого конца его х, и поэтому естественно вероятность является функцией от х, определенной на всей оси
.
Заметим, что функция распределения имеет смысл также для дискретных случайных величин.
Функция распределения Ф(х) обладает следующими свойствами:
I.Функция Ф(х) есть неубывающая функция аргумента х, т. е. если то
.
Действительно, если х’ > х, то из события очевидно, следует событие
. Но тогда вероятность Ф(х’) второго события не меньше вероятности Ф(х) первого.
II.Так как Ф(х) — вероятность, то справедливо неравенство
III.
Действительно, событие очевидно, невозможно, а событие
достоверно.
Зная функцию распределения Ф(х), можно для любого промежутка определить
— вероятность попадания случайной величины X в этот промежуток (здесь принято левый конец а промежутка включать, а правый
не включать в этот промежуток).
В самом деле, пусть А есть событие , В — событие
и С — событие
.
Тогда, очевидно, имеем
Так как события А и С несовместны, то по теореме сложения вероятностей получаем Р(Б) = Р(А) + Р(С), отсюда
причем в силу свойства I.
Таким образом, вероятность того, что случайная величина X примет значение, принадлежащее промежутку [a, b), равна приращению ее функции распределения на этом промежутке.
В дальнейшем случайную величину X будем называть непрерывной лишь в том случае, когда ее функция распределения Ф(х) непрерывна на оси .
Теорема: Вероятность (до опыта) того, что непрерывная случайная величина X примет заранее указанное строго определенное значение а, равна нулю.
В самом деле, в силу формулы (2) имеем
Положим, что ; тогда в пределе промежуток [а, х) будет содержать единственную точку а. Кроме того, в силу непрерывности функции Ф(х) в точке а имеем
Переход я к пределу при в равенстве (3), получим
Таким образом, при непрерывной функции распределения вероятность «попадания в точку» равна нулю.
Следствие. Для непрерывной случайной величины X справедливы равенства
где — ее функция распределения. Действительно,
Аналогично доказывается второе равенство.
Замечание. В общем случае невозможные события и события с нулевой вероятностью могут оказаться неэквивалентными.
Предположим теперь, что для непрерывной случайной величины X ее функция распределения Ф(х) имеет непрерывную производную
Функцию ф(х) называют плотностью вероятности (для данного распределения) или дифференциальным законом распределения случайной величины X.
Термин плотность вероятности имеет следующий смысл. Пусть — бесконечно малый промежуток. Тогда в силу формулы (2′) имеем
Заменяя бесконечно малое приращение функции ее дифференциалом
, получаем приближенное равенство
Таким образом, плотность вероятности представляет собой отношение вероятности попадания точки в бесконечно малый промежуток к длине этого промежутка.
Так как плотность вероятности ф(х) является производной неубывающей функции Ф(х), то она неотрицательна: . В отличие от вероятности, плотность вероятности может принимать сколь угодно большие значения.
Так как Ф(х) является первообразной для ф(х), то на основании формулы Ньютона—Лейбница имеем
Отсюда в силу (3′) получаем
Геометрически (рис. 271) эта вероятность представляет собой площадь S криволинейной трапеции, ограниченной — графиком плотности вероятности у = ф(х), осью Ох и двумя ординатами
Полагая получаем достоверное событие
, вероятность которого равна единице. Следовательно,
Полагая в формуле (6) и обозначая для ясности переменную интегрирования х другой буквой, например t (это законно для определенного интеграла), получаем функцию распределения
Числовые характеристики непрерывной случайной величины
Будем рассматривать бесконечно малый промежуток как «жирную точку» х оси Ох. Тогда вероятность того, что случайная величина X принимает значение, совпадающее с этой «жирной точкой» х, равна y(x)dx и математическое ожидание этого события есть
Представляя прямую как бесконечное множество таких жирных точек, по аналогии с определением математического ожидания дискретной случайной величины, получаем естественное определение математического ожидания непрерывной случайной величины (только здесь суммирование заменяется интегрированием).
Определение: Под математическим о жид а ни ем непрерывной случайной величины X понимается число
(конечно, это определение имеет смысл лишь для таких случайных величин X, для которых интеграл (1) сходится).
Для дисперсии непрерывной случайной величины X сохраним прежнее определение
Из формулы (1) вытекает
(конечно, в предположении, что интеграл (2) сходится). Можно также пользоваться формулой
Можно доказать, что основные свойства математического ожидания и дисперсии дискретных случайных величин сохраняются также и для непрерывных случайных величин.
Пусть теперь все возможные значения непрерывной случайной величины X целиком заполняют конечный отрезок . Тогда ф(х) = 0 при
и при
и, следовательно,
Равномерное распределение
Непрерывная случайная величина X, все возможные значения которой заполняют конечный промежуток , называется равномерно распределенной, если ее плотность вероятности ф(х) постоянна на этом промежутке.
Иными словами, для равномерно распределенной случайной величины все ее возможные значения являются равновозможными.
Пусть, например, . Так как в этом случае ф(х) = const при
, то
Пусть (рис. 272). Тогда
где L — длина (линейная мера) всего отрезка и
— длина частичного отрезка
.
Значения случайной величины X, т. е. точки х отрезка , можно рассматривать как всевозможные элементарные исходы некоторого испытания. Пусть событие А состоит в том, что результат испытания принадлежит отрезку
. Тогда точки отрезка
есть благоприятные элементарные исходы события А.
Согласно формуле (1) имеем геометрическое определение вероятности: под вероятностью события А понимается отношение меры множества элементарных исходов, благоприятствующих событию А, к мере L множества всех возможных элементарных исходов в предположении, что они равновозможны:
Это определение естественно переносит классическое определение вероятности на случай бесконечного числа элементарных исходов.
Аналогичное определение можно ввести также тогда, когда элементарные исходы испытания представляют собой точки плоскости или пространства.
Пример №10
В течение часа (t —- время в часах) на остановку прибывает один и только один автобус. Какова вероятность того, что пассажиру, пришедшему на эту остановку в момент времени t = 0, придется ожидать автобус не более 10 мин?
Решение:
Здесь множество всех элементарных исходов образует отрезок [0, 1], временная длина которого L = 1, а множество благоприятных элементарных исходов составляет отрезок [0,1/6] временной длины = 1/6.
Поэтому искомая вероятность есть
Пример №11
В квадрат К со стороной а с вписанным в него кругом S (рис. 273) случайно бросается материальная точка М. Какова вероятность того, что эта точка попадает в круг S?
Решение:
За искомую вероятность естественно принять отношение
Эта вероятность, а следовательно, и число л, очевидно, могут быть определены экспериментально.
Нормальное распределение
Распределение вероятностей случайной величины X называется нормальным, если плотность вероятности подчиняется закону Гаусса
где — некоторые постоянные, причем а > 0 и b > 0. В этом случае график плотности вероятности представляет собой смещенную кривую Гаусса (рис. 274), симметричную относительно прямой
и с максимальной ординатой
Для удобства выкладок эту кривую центрируем, введя новые координаты и
. Тогда закон Гаусса примет вид
и будет представлять собой дифференциальный закон распределения случайной величины
Постоянные а и b в формуле (2) не являются произвольными, так как для плотности вероятностей должно быть выполнено условие
Делая замену переменной , будем иметь
Отсюда на основании формулы (3) находим
Для математического ожидания случайной величины будем иметь
(ввиду нечетности подынтегральной функции). Отсюда
Таким образом, при нормальном распределении случайной величины X ее математическое ожидание х0 совпадает с точкой пересечения оси симметрии графика соответствующей кривой Гаусса с осью Ох (центр рассеивания).
Для дисперсии случайной величины X получаем
Полагая и интегрируя по частям, с учетом формулы (4) будем иметь
Таким образом, из формулы (9) получаем
Отсюда для среднего квадратичного отклонения величины X получим
Введя обозначение , будем иметь
Подставляя эти значения в формулу (1), получим стандартный вид нормального закона распределения случайной величины X в дифференциальной форме:
где
Таким образом, нормальный закон распределения зависит только от двух параметров: математического ожидания и среднего квадратичного отклонения.
Нормальный закон распределения случайной величины в интегральной форме имеет вид
Формулы (11) и (12) упрощаются, если ввести нормированное отклонение
. Полагая в интеграле (12) , получаем
где t определяется формулой (13) и — стандартный интеграл вероятностей.
Отсюда получаем, что для случайной величины X, подчиняющейся нормальному закону, вероятность попадания ее на отрезок есть
В частности, вероятность того, что отклонение величины X от ее математического ожидания х0 по абсолютной величине будет меньше а, равна
Полагая , получаем
т. е. такое отклонение является почти достоверным (правило трех сигм).
Нормальный закон распределения вероятностей находит многочисленные применения в теории ошибок, теории стрельбы, физике и т. д.
Пример №12
Задана плотность распределения
Определить коэффициент к и функцию распределения
Отсюда
Построим график (рис. 2.12).
Найдем функцию распределения, используя (2.7):
Построим график (рис. 2.13).
(по определению функции распределения).
Замечание. В случае симметричного модального распределения медиана совпадает с мат. ожиданием и модой.
Когда медиана входит в формулы как определенное число, то ее обозначают .
Моменты:
Данные характеристики описывают некоторые свойства распределения СВ. В механике, например, для описания распределения масс существуют статические моменты, моменты инерции.
.
a) Для дискретных случайных величин: . (4)
Замечание. Определение совпадает с определением начального момента порядка s в механике, если на оси (Ох) в точках сосредоточены соответственно массы
.
b) Для непрерывных случайных величин: . (5)
Определение 44. Центрированной случайной величиной, соответствующей величине X, называется отклонение случайной величины Х от ее математического ожидания:
.
Рассмотрим математическое ожидание центрированной ДСВ:
.
Аналогично, для НСВ .
Центрирование СВ равносильно переносу начала координат в среднюю, центральную точку, абсцисса которой равна математическому ожиданию.
Определение 45. Моменты центрированной случайной величины называются центральными моментами.
.
a) Для дискретных случайных величин: . (6)
b) Для непрерывных случайных величин: . (7)
Замечание. Для любой СВ центральный момент 1-го порядка равен 0:
, так как мат. ожидание центрированной СВ равно 0.
Рассмотрим подробнее центральные моменты 2, 3, 4 порядков и выведем соотношения, связывающие начальные и центральные моменты.
— дисперсия
Определение 47. Дисперсией случайной величины X D[X] называется мат ожидание квадрата соответствующей центрированной случайной величины:
a) Для дискретных случайных величин: . (8)
b) Для непрерывных случайных величин: .(9)
Когда дисперсия входит в формулы как определенное число, то ее обозначают
Рассмотрим ДСВ. (Для НСВ получаем аналогично)
.
— связь между начальным и центральным моментом 2-го порядка. (10)
Свойства D[X].
2. .
3. .
4. для независимых СВ.
5. — постоянные.
Замечание. D[X] имеет размерность квадрата случайной величины. Для более наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из D[X] извлекают корень:
где — среднее квадратическое отклонение или стандарт случайной величины X.
Когда среднее квадратическое входит в формулы как определенное число, то его обозначают .
Замечание. Математическое ожидание и дисперсия характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания применяются моменты высших порядков.
— асимметрия
Теорема. Если распределение симметрично относительно мат. ожидания (т. е. масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю.
Доказательство.
Действительно, для ДСВ в сумме при симметричном относительно
законе распределения и нечетном s каждому положительному слагаемому соответствует равное ему по абсолютной величине отрицательное слагаемое так, что вся сумма равна 0. Аналогично. Для НСВ
как интеграл в симметричных пределах от нечетной функции. (что и требовалось доказать).
Определение 48. Коэффициентом асимметрии Sk случайной величины X называется величина
.
связь между начальными и центральным моментом 3-го порядка.
и эксцесс
Четвертый центральный момент служит для характеристики «крутости», т. е. островершинности или плосковсршинности распределения.
Это свойство описывается с помощью эксцесса.
Определение 49. Эксцессом случайной величины X называется величина
Число 3 вычитается из соотношения потому, что для наиболее распространенного нормального закона распределения НСВ (с которым познакомимся позднее)
.
Абсолютные моменты:
— начальный абсолютный момент.
— центральный абсолютный момент.
Абсолютные моменты четных порядков совпадают с обычными моментами. Из абсолютных моментов нечетного порядка чаще всего применяется первый абсолютный центральный момент:
— среднее арифметическое отклонение.
a) Для дискретных случайных величин: , (14)
b) Для непрерывных случайных величин: (15)
применяется как характеристика рассеивания (как и
).
Замечания.
1. Моменты могут рассматриваться не только относительно начала координат (начальные) или математического ожидания (центральные), но и относительно произвольной точки а:
.
2. Во многих задачах полная характеристика случайной величины (закон распределения) не нужна или не может быть получена, поэтому ограничиваются приблизительным описанием СВ с помощью числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения. Иногда характеристиками пользуются для приближенной замены одного распределения другим.
Пример №17
Дан ряд распределения ДСВ:
Решение.
1) Величину а найдем из условия: , отсюда а = 0,4.
2) Найдем математическое ожидание и дисперсию:
По формуле (1) ,
По формуле (8) .
Дисперсию можно было найти, используя формулу (10) и (4):
3) М[ЗХ + 2] = (по 5 свойству мат. ожидания) = ,
D[2X + 3] = (по 5 свойству дисперсии) =
Пример №18
Решение.
Ранее мы построили ряд распределения числа попаданий. Ряд распределения имеет вид:
1) . (по формуле 1).
2)
(по формуле 8. Можно было по формуле (4): ).
3) (по формуле 11).
4) Найдем моду М: , следовательно, М = 1.
Тогда коэффициент асимметрии по формуле (12) .
6) По формуле (14) найдем среднее арифметическое отклонение:.
Пример №19
Непрерывная случайная величина подчинена закону распределения с плотностью . Найти: 1) коэффициент А, 2) математическое ожидание, 3) дисперсию, 4) среднее квадратическос отклонение, 5) моду, 6) медиану, 7) асимметрию, 8) эксцесс.
Решение.
1) Если х 2, то f(x) = 0 и, следовательно в) Вероятность того, что случайная величина Х примет значение на отрезке [0; 1] находим, используя свойство 2:
Пример №61
Методом произведений вычислить выборочную среднюю и выборочную дисперсию по данным выборки (табл. 3.1).
Решение. В качестве «ложного нуля» возьмем варианту 16.
Следовательно
Результаты вычислений сведем в табл. 3.2.
Контроль: 273 = 100 + 46 + 127.
Равенство выполнено, следовательно, таблица заполнена верно.
Вычислим условные начальные моменты:
Вычислим выборочную среднюю и выборочную дисперсию:
Определим исправленную выборочную дисперсию:
и исправленное среднее квадратическое отклонение:
Получим несмещенные оценки для математического ожидания, дисперсии и среднего квадратического отклонения.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
- Что такое ввести id игрока
- Что такое герпетическая инфекция