Что такое рекуррентное выражение

Решение рекуррентных соотношений

Содержание

Определения [ править ]

[math] F_0 = 0,\qquad F_1 = 1,\qquad F_ = F_ + F_, \quad n\geqslant 2, \quad n\in Z[/math]

Для этого можно использовать метод производящих функций (англ. generating function method).

Метод производящих функций [ править ]

Примеры [ править ]

[math]1[/math] пример [ править ]

Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.

Задано линейное однородное рекуррентное соотношение порядка [math]2[/math] с постоянными коэффициентами:
[math]\begin a_0&<>=<>&0,\\ a_1&<>=<>&1,\\ a_n&<>=<>&5a_-6a_, \quad n\geqslant2.\\ \end [/math]

Будем искать производящую функцию последовательности в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n = a_0+a_1z+a_2z^2+\cdots, [/math]

Теперь сложим все уравнения для всех значений [math]n[/math] :
[math] \underbrace^<\infty>a_nz^n>_ <=>z+5\displaystyle\sum_^<\infty>a_z^n-6\displaystyle\sum_^<\infty>a_z^n. [/math]

Аналогичные манипуляции со второй суммой дают нам выражение
[math] \displaystyle\sum_^<\infty>a_z^n = z^2\displaystyle\sum_^<\infty>a_z^ = z^2\displaystyle\sum_^<\infty>a_z^=z^2G(z). [/math]

откуда получаем производящую функцию последовательности в замкнутом виде:
[math] G(z) = \dfrac<1-5z+6z^2>. [/math]

Теперь разобьём дробь на сумму простых дробей:
[math] \dfrac <(1-3z)(1-2z)>= \dfrac<1> <1-3z>— \dfrac<1><1-2z>. [/math]

Из этого разложения следует, что
[math] \dfrac<1><1-3z>= \displaystyle\sum_^<\infty>(3z)^n \quad\mbox< и >\quad \dfrac<1><1-2z>= \displaystyle\sum_^<\infty>(2z)^n. [/math]

С другой стороны, мы искали [math]G(z)[/math] в виде
[math] G(z)=\displaystyle\sum_^ <\infty>a_nz^n, [/math]
поэтому, в силу равенства рядов, [math]a_n=3^n-2^n[/math] (для [math]n\geqslant 0[/math] ).

[math]2[/math] пример: числа Фибоначчи [ править ]

Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
[math]\begin f_0&<>=<>&0,\\ f_1&<>=<>&1,\\ f_n&<>=<>&f_+f_, \quad n\geqslant2.\\ \end [/math]

Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
[math]\begin 1\cdot f_0&<>=<>&0\cdot 1,\\ z\cdot f_1&<>=<>&1\cdot z,\\ z^n\cdot f_n&<>=<>&(f_+f_)\cdot z^n, \quad n\geqslant2.\\ \end [/math]

Складываем все строчки:
[math] f_0 + f_1 z + \displaystyle\sum_^<\infty>f_nz^n = z + \displaystyle\sum_^<\infty>f_z^n+\displaystyle\sum_^<\infty>f_z^n. [/math]

Третий шаг алгоритма требует привести все суммы к замкнутому виду:
[math]\begin G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^+z^2\displaystyle\sum_^<\infty>f_z^, \\ G(z) &<>=<>& z + z\displaystyle\sum_^<\infty>f_z^n+z^2\displaystyle\sum_^<\infty>f_z^n, \\ G(z)&<>=<>& \displaystyle z + z(G(z)-f_0)+z^2G(z),\\ G(z)&<>=<>& \displaystyle z + zG(z)+z^2G(z),\\ \end [/math]

откуда получаем замкнутое выражение для производящей функции:
[math] G(z) = \dfrac<1-z-z^2>. [/math]

Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
[math]\displaylines< 1-z-z^2 = 0 \cr z_1=-\dfrac<1-\sqrt<5>><2>, z_2=-\dfrac<1+\sqrt<5>><2>. > [/math]

Нам известно разложение следующей рациональной функции:
[math] \dfrac<1> <1-z>= \displaystyle\sum_^<\infty>z^n = 1 + z + z^2 + z^3 + \cdots. [/math]

Рассмотрим первую дробь и поделим в ней числитель и знаменатель на [math]z_1[/math] :
[math] \dfrac = \dfrac1\dfrac<1><1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

Аналогично (но с делением на [math]z_2[/math] ) поступим со второй дробью:
[math] \dfrac = \dfrac1\dfrac1<1-\dfrac> = \dfrac1\displaystyle\sum_^<\infty>\dfrac. [/math]

[math]3[/math] пример [ править ]

Рекуррентное соотношение:
[math] \begin a_0 = f_0^2 = 1 \\ a_1 = f_1^2 = 1 \\ a_2 = f_2^2 = 4 \\ a_n = 2a_ + 2a_ — a_, \quad n\geqslant3.\\ \end [/math]

[math]4[/math] пример [ править ]

Рассмотрим следующее рекуррентное соотношение:
[math]\begin a_0&<>=<>&1,\\ a_1&<>=<>&2,\\ a_n&<>=<>&6a_-8a_+n, \quad n\geqslant2.\\ \end [/math]

Вспомним, что
[math] (z^n)’ = nz^, [/math]

поэтому
[math] \displaystyle\sum_^<\infty>nz^n=z\displaystyle\sum_^<\infty>nz^=z\displaystyle\sum_^<\infty>(z^n)’=z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’. [/math]

Последняя сумма может быть свёрнута:
[math] \displaystyle\sum_^<\infty>z^n=\displaystyle\sum_^<\infty>z^n-1-z=\dfrac<1><1-z>-1-z=\dfrac<1-z>. [/math]

Подставив свёрнутое выражение обратно, имеем,
[math] z\biggl(\displaystyle\sum_^<\infty>z^n\biggr)’ = z \biggl(\dfrac<1-z>\biggr)’=\dfrac<(1-z)^2>. [/math]

Это уравнение для производящей функции. Из него выражаем [math]G(z)[/math] :
[math] G(z) = \dfrac<1-6z+11z^2-5z^3><(1-6z+8z^2)(1-z)^2>. [/math]

Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
[math] \dfrac<1> <(1-z)^2>=(1-z)^ <-2>=\displaystyle\sum_^<\infty>\binom<-2>(-z)^n=\displaystyle\sum_^<\infty>(-1)^n\binom<1>(-z)^n =\displaystyle\sum_^<\infty>(n+1)z^n. [/math]

Источник

Дискретная математика — рекуррентное соотношение

Определение

Рекуррентное отношение — это уравнение, которое рекурсивно определяет последовательность, в которой следующий член является функцией предыдущих членов (выражая F n как некоторую комбинацию F i с i n ).

Линейные рекуррентные отношения

Линейное рекуррентное уравнение степени k или порядка k — это рекуррентное уравнение в формате x n = A 1 x n − 1 + A 2 x n − 1 + A 3 x n − 1 + d o t s A k x n k ( A n — константа, а A k n e q 0 ) на последовательности чисел как полинома первой степени.

Вот некоторые примеры линейных рекуррентных уравнений —

Рецидив отношенийНачальные значенияРешения
F n = F n-1 + F n-2a 1 = a 2 = 1Число Фибоначчи
F n = F n-1 + F n-2а 1 = 1, а 2 = 3Номер Лукаса
F n = F n-2 + F n-3a 1 = a 2 = a 3 = 1Падовская последовательность
F n = 2F n-1 + F n-2a 1 = 0, a 2 = 1Число Пелла

Как решить линейное рекуррентное соотношение

Характеристическое уравнение для вышеуказанного рекуррентного соотношения —

Три случая могут возникнуть при поиске корней —

Характеристическое уравнение рекуррентного соотношения —

Итак, ( x − 3 ) ( x − 2 ) = 0

Корни реальны и различны. Итак, это в форме дела 1

F n = a x n 1 + b x n 2

Здесь F n = a 3 n + b 2 n ( A s x 1 = 3 a n d x 2 = 2 )

1 = F 0 = a 3 0 + b 2 0 = a + b

4 = F 1 = a 3 1 + b 2 1 = 3 a + 2 b

Решая эти два уравнения, мы получаем a = 2 и b = − 1

Следовательно, окончательное решение —

Характеристическое уравнение рекуррентного соотношения —

Следовательно, существует один действительный корень x 1 = 5

Поскольку существует единый действительный корень, он имеет вид случая 2

F n = a x n 1 + b n x n 1

Решая эти два уравнения, мы получаем a = 3 и b = 2 / 5

Характеристическое уравнение рекуррентного соотношения —

Источник

Рекуррентные соотношения и уравнения

В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.

Как решать рекуррентные соотношения?

Для решения рекуррентных соотношений применяют один из двух основных способов:

В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.

Метод производящих функций

Метод характеристических функций

Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:

Решение для последовательности чисел Фибоначчи

Общая формула данной рекуррентной последовательности имеет вид6

Способ 1. Производящяя функция

$$\begin 1\cdot f_0 &= &0\cdot 1,\\ z\cdot f_1 &= &1\cdot z,\\ z\cdot f_n & = &(f_+f_)\cdot z^n, \quad n\geq2.\\ \end $$

Складываем все строчки:

На третьем шаге алгоритма приводим все суммы к замкнутому виду:

откуда выводим искомое выражение для производящей функции:

Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:

Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:

Преобразуем данное выражение, используя то, что

Способ 2. Характеристическое уравнение

Тогда общее решение однородного рекуррентного уравнения имеет вид:

Решая систему, найдем

Итоговое выражение для последовательности чисел Фибоначчи:

Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.

Примеры решений

Источник

Рекуррентная формула

Рекуррентная формула — формула вида Что такое рекуррентное выражение. Смотреть фото Что такое рекуррентное выражение. Смотреть картинку Что такое рекуррентное выражение. Картинка про Что такое рекуррентное выражение. Фото Что такое рекуррентное выражение, выражающая каждый член последовательности Что такое рекуррентное выражение. Смотреть фото Что такое рекуррентное выражение. Смотреть картинку Что такое рекуррентное выражение. Картинка про Что такое рекуррентное выражение. Фото Что такое рекуррентное выражениечерез p предыдущих членов.

Общая проблематика вычислений с использованием рекуррентных формул является предметом теории рекурсивных функций.

Содержание

Примеры

Приложения

Рекуррентные формулы используются для описания времени работы алгоритма, рекурсивно обращающегося к самому себе. В такой формуле время, требуемое для решения задачи объемом ввода n, выражается через время решения вспомогательных подзадач. [1]

См. также

Примечания

Полезное

Смотреть что такое «Рекуррентная формула» в других словарях:

рекуррентная формула — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN recurrence formularecursion formula … Справочник технического переводчика

рекуррентная формула — rekurentinė formulė statusas T sritis fizika atitikmenys: angl. recurrence formula vok. Rekursionsformel, f rus. рекуррентная формула, f pranc. formule de récurrence, f … Fizikos terminų žodynas

Рекуррентная формула — (от лат. recurrens, родительный падеж recurrentis возвращающийся) формула приведения, формула, сводящая вычисление n го члена какой либо последовательности (чаще всего числовой) к вычислению нескольких предыдущих её членов. Обычно эти… … Большая советская энциклопедия

РЕКУРРЕНТНАЯ ТОЧКА — д и н а м и ч е с к о й с и с т е м ы точка хдинамич. системы ft (или, в иных обозначениях, f(t,.), см. [2]), заданной на метрич. пространстве S, удовлетворяющая условию: для всякого e>0 найдется T>0 такое, что все точки траектории ftx… … Математическая энциклопедия

Математическая формула — Эта статья об обозначениях элементарной математики; Для более общего контекста см.: Математические обозначения. Математическая формула (от лат. formula уменьшительное от forma образ, вид) принятая в математике (а также… … Википедия

Источник

Что значит «рекуррентная формула»

Энциклопедический словарь, 1998 г.

Большая Советская Энциклопедия

Последовательность jn ≈ т. н. чисел Фибоначчи ≈ задаётся формулами:

j0 = 0, j1 = 1, jn+2 = jn+1 + jn (n > 0)

Последняя из них является Р. ф.; она позволяет вычислить j2, j3 и дальнейшие члены этой последовательности.

Нетрудно показать, что для n ³ 2 выполняется соотношение

Это ≈ Р. ф., сводящая вычисление In к вычислению /0 или l1 в зависимости от чётности n.

Р. ф. обычно даёт удобную вычислительную схему для нахождения членов последовательности друг за другом. Однако иногда, исходя из Р. ф., стремятся получить «явное» выражение для n-го члена последовательности, описываемой этой Р. ф. Так, в случае чисел Фибоначчи

Википедия

Рекуррентная формула — формула вида a = f(n, a, a, …, a), выражающая каждый член последовательности a через p предыдущих членов и возможно номер члена последовательности n.

Рекуррентным уравнением называется уравнение, связывающее несколько подряд идущих членов некоторой числовой последовательности. Последовательность, удовлетворяющая такому уравнению, называется рекуррентной последовательностью.

Транслитерация: rekurrentnaya formula
Задом наперед читается как: алумроф яантнеррукер
Рекуррентная формула состоит из 19 букв

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *