Что такое рибосомы определение
Значение слова «рибосома»
[От лат. ribes — поток, струя и греч. σω̃μα — тело]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкреплённой форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
Рибосомы представляют собой нуклеопротеид, в составе которого соотношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5,8S и 28S рРНК синтезируются в ядрышке РНК-полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируются РНК-полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.
Константа седиментации (скорость оседания в ультрацентрифуге) у цитоплазматических рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), у рибосом бактериальных клеток (а также у рибосом митохондрий и пластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно).
рибосо́ма
1. цитол. клеточный органоид, служащий для синтеза белка из аминокислот ◆ В каждой клетке организма имеются специальные органоиды, молекулярные устройства — рибосомы, которые считывают информацию с генома и на её основании в нужное время синтезируют нужные белки — необходимые строительные материалы человеческого организма. Александр Иличевский, «Перс», 2009 г. (цитата из НКРЯ) ◆ В клетке белковые нити синтезируются в особом молекулярном устройстве — рибосоме (в её состав входит и рибонуклеиновая кислота). В. Лысцов, «Искусственный фермент», 1970 г. // «Химия и жизнь» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: спрашиваться — это что-то нейтральное, положительное или отрицательное?
Рибосомы: строение и функции
Рибосомы – это как крошечные фабрики в клетке. Они производят белки, которые выполняют различные функции для работы клетки.
Рибосомы или находятся в жидкости внутри клетки, что называется цитоплазмой, или присоединены к мембране. Их можно найти как у прокариотах (бактерий), так и у эукариотах (животные и растения). Больше о химическом составе и структуре клетки читайте в учебнике по биологии за 9 класс Л.И. Остапченко.
Рибосома имеет два основных компонента, которые называются большой и малой субъединицами. Эти две единицы объединяются, когда рибосома готова выработать новый белок. Они состоят из цепей РНК и различных белков.
В большой субъединицы содержатся сайты, где создаются новые связи при создании белков. Малая субъединица на самом деле не так уж и мала, только немного меньше, чем большая. Она отвечает за поток информации при синтезе белка.
Согласно величине константы седиментации, которая зависит от размера частиц, их формы и плотности, рибосомы разделяют на 70S (S является единицей измерения Сведберга) – прокариотические и 80S – эукариотические. Рибосомы хлоропластов высших растений относятся к 70S типа. Митохондриальные рибосомы грибов имеют коэффициент седиментации 75S, а митохондрии млекопитающих содержат мини-рибосомы – 55S, хотя функциями они похожи на 70S рибосом прокариот.
Основная работа рибосомы – это изготовление белков для клетки. Клетке необходимо изготовить сотни белков, поэтому рибосома требует конкретных инструкций, как изготовить каждый. Эти инструкции поступают из ядра в виде месенджерних РНК. В м-РНК содержатся конкретные коды, которые действуют как рецепт, чтобы рассказать рибосоме, как сделать белок.
В выработке белков есть два основных этапа: транскрипция и трансляция. Рибосома делает этап трансляции. Узнать больше о белках можно в учебнике по биологии за 9 класс В.И. Соболя.
Трансляция – это процесс получения инструкций от м-РНК и превращения ее в белок. Основной задачей функционирования живой клетки считается биосинтез белка. Для воспроизведения этой операции абсолютно во всех клеточных организмах находятся рибосомы. Рибосома делает следующие шаги, чтобы сделать белок:
Две субъединицы объединяются вместе с РНК для обмена сообщениями.
Рибосома распознает тритонуклеотидные кодоны м-РНК.
Рибосома движется вниз по РНК, читая инструкции о том, какие аминокислоты присоединить к белку. Для отличия аминокислот в клетке существуют особые «адаптеры» – молекулы т-РНК. Они напоминают форму листа клевера, имеющий область (антикодон), соответствующую кодону м-РНК, и еще один участок для присоединения аминокислоты, которая комплиментарная этому кодону.
Рибосома присоединяет аминокислоты, образующие белок. Прикрепление аминокислот к т-РНК происходит в энергозависимой реакции с помощью ферментов аминоацил-т-РНК-синтетазы.
Рибосома прекращает строить белок, когда он достигает кода «стоп» в РНК, который сообщает ему, что белок готов.
Интересные факты о рибосоме:
Название рибосомы происходит от рибонуклеиновой кислоты (РНК), которая дает указания по изготовлению белков.
Рибосомы изготавливаются внутри ядра. После того, как они готовы, они направляются за его пределы через поры в мембране ядра.
Рибосомы отличаются от большинства органелл тем, что они не окружены защитной мембраной.
Рибосому было открыто в 1974 году Альбертом Клодом, Кристианом де Дюве и Джорджем Эмилем Палладом. Они получили Нобелевскую премию за свое открытие.
РИБОСОМА
Полезное
Смотреть что такое «РИБОСОМА» в других словарях:
рибосома — рибосома … Орфографический словарь-справочник
Рибосома — Рибосома важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15 20 нанометров (прок … Википедия
РИБОСОМА — РИБОСОМА, мельчайшая структура ЦИТОПЛАЗМЫ клеток, участвующая в синтезе молекул БЕЛКА. Каждый белок состоит из определенной последовательности АМИНОКИСЛОТ. Генетический материал ДНК состоит из длинной цепи органических ОСНОВАНИЙ четырех видов.… … Научно-технический энциклопедический словарь
рибосома — ы, ж. (нем. Ribosom … Словарь иностранных слов русского языка
рибосома — рибосома. См. тельце Паладе. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
рибосома — сущ., кол во синонимов: 1 • органелла (11) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
рибосома — Органоид, являющийся местом биосинтеза белка из аминоацил тРНК на матрице мРНК [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN ribosome … Справочник технического переводчика
рибосома — ribosoma statusas T sritis augalininkystė apibrėžtis Ląstelių organoidas, kuriame vyksta baltymų biosintezė. atitikmenys: angl. ribosome rus. рибосома … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
рибосома — (ribosoma; рибоза + греч. soma тело; син. Пелейда гранула) органоид, являющийся местом биосинтеза клеточных белков; представляет собой плотную сферическую частицу, состоящую из почти равных количеств рибонуклеиновых кислот и белков,… … Большой медицинский словарь
РИБОСОМА — крупный внутриклеточный макромолекуляр ный ансамбль, ответственный за синтез полипептидной цепи из аминокислот (трансляцию); состоит из молекул РНК (т. наз. рибосомные рибонуклеиновые кислоты, или рРНК) и белков. Осн. масса Р. локализована в… … Химическая энциклопедия
Исследователи раскрыли рецепт создания рибосом. Как это поможет человечеству?
Ученые придумали высокопроизводительный метод построения рибосом, который использует части различных микробов, а также измеряет и оптимизирует способность рибосом катализировать производство белка. Рассказываем о новом исследовании биологов и все, что нужно знать о рибосоме.
Читайте «Хайтек» в
Что такое рибосома?
Рибосоома — важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму диаметром от 15–20 нанометров (прокариоты) до 25–30 нанометров (эукариоты), состоят из большой и малой субъединиц. Малая субъединица считывает информацию с матричной РНК, а большая — присоединяет соответствующую аминокислоту к синтезируемой цепочке белка.
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
Какая функция у рибосом?
Рибосомы на внешней поверхности эндоплазматического ретикулума играют важную роль в синтезе белка внутри клеток.
ДНК в ядре клетки несет генетический код, который состоит из последовательностей аденина (A), тимина (T), гуанина (G) и цитозина (C). РНК, которая содержит урацил (U) вместо тимина, переносит код на участки образования белков в клетке. Чтобы создать РНК, ДНК соединяет свои основания с основаниями «свободных» нуклеотидов. Информационная РНК (мРНК) затем перемещается к рибосомам в цитоплазме клетки, где происходит синтез белка. Основные триплеты транспортной РНК (тРНК) соединяются с таковыми из мРНК и в то же время откладывают свои аминокислоты на растущей белковой цепи. Наконец, синтезированный белок высвобождается для выполнения своей задачи в клетке или в другом месте тела.
Рибосомы состоят из рибосомных белков и рибосомальной РНК (рРНК). У прокариот рибосомы примерно на 40% состоят из белка. У эукариот рибосомы примерно наполовину состоят из белка и наполовину из рРНК. Рибосомы обычно состоят из трех или четырех молекул рРНК и примерно от 40 до 80 различных рибосомных белков.
Каждая рибосома состоит из двух субъединиц, большей и меньшей, каждая из которых имеет характерную форму. Субъединицы обычно называют их скоростью седиментации, которая измеряется в единицах Сведберга (S) в центробежном поле. Маленькие и большие субъединицы эукариот обозначаются 40S и 60S, соответственно, в то время как прокариоты содержат небольшую субъединицу 30S и большую субъединицу 50S.
Зачем ученым изучать рибосомы?
Рибосома — это клеточная фабрика по синтезу белка. Обладая скоростью синтеза белка до 20 аминокислот в секунду и точностью 99,99%, необычайная каталитическая способность бактериального механизма трансляции привлекла значительные усилия для разработки, реконструкции и перепрофилирования для биохимических исследований и новых функций. Фундаментальные ограничения на химические процессы, которые может выполнять активный сайт на основе РНК рибосомы, неизвестны до сих пор.
Тем не менее, ученые стремятся создать новые виды рибосом, которые генерируют белки с новыми свойствами.
Исследователи из Института Брода сделали важный шаг в этом направлении. Они придумали высокопроизводительный метод построения рибосом, который использует части различных микробов. Кроме того, он измеряет и оптимизирует способность рибосом катализировать производство белка. В исследовании, опубликованном в Nature Communications, подробно описывается успешное введение более 30 различных рибосом в клетку Escherichia coli.
Напомним, E. coli, или кишечная палочка — вид грамотрицательных палочковидных бактерий, широко распространенных в нижней части кишечника теплокровных животных. Большинство ее штаммов безвредны, однако серотип O157:H7 может вызывать тяжелые пищевые отравления у людей и животных.
Поскольку антибиотики обычно нацелены на рибосомы у различных бактерий, новый метод может стать способом быстрого тестирования новых лекарств, нацеленных только на молекулярные фабрики конкретных патогенов у человека.
Таким образом ученые планируют решить проблему резистентности к антибиотикам. Технология позволит проверять новые лекарства и потенциально обнаруживать молекулы, которые ингибируют рибосомы от патогенов человека, но не комменсальные бактерии. Они помогают иммунной системе распознавать болезнетворные микроорганизмы. Патогенные бактерии при попадании в организм способны вызывать заболевания. Эти бактерии могут распространяться через воду, воздух, почву, а также при физическом контакте.
Работа также дает исследователям новые инструменты для синтетической биологии. Раньше рибосомы E. coli представляли собой основную часть инструментария, доступного синтетическим биологам. Во время работы ученые были заинтересованы в расширении этого инструментария на рибосомы других видов и использовании их для новых приложений.
Как продвинулись ученые?
Исследователи синтетической биологии обычно используют части рибосомы E. coli при конструировании новых макромолекул, но это ограничивает возможности исследователей создавать большее количество молекул.
В начале исследования команда ученых стремилась понять, почему так сложно заставить рибосому другого вида работать в клетке E. coli. Для этого биологи использовали ортогональную трансляцию. Этот метод заставляет рибосому генерировать исключительно определенный белок — в данном случае зеленый флуоресцентный белок (GFP). Если рибосома работала в новой среде, исследователи могли сразу увидеть, что клетка вырабатывает GFP и флуоресцирует зеленым цветом.
Напомним, зеленый флуоресцентный белок выделен из медузы Aequorea victoria, который флуоресцирует в зеленом диапазоне при освещении его светом от синего до ультрафиолетового диапазона.
Используя этот метод, ученые определили, что рибосомы бактерий, тесно связанных с E. coli, могут легко транслировать GFP. Чем более генетически диверсифицированы бактерии, тем труднее их рибосомам работать в кишечной палочке.
Однако команда из Института Брода смогла улучшить функцию рибосом из отдаленно родственных бактерий, введя ключевую РНК и белки, связанные с рибосомами из исходной клетки. Таким образом миниатюрная молекулярная фабрика чувствовала себя как дома и заставляла ее работать с E. coli. Затем исследователи разработали универсальные инженерные правила для ортогональной трансляции, которые можно было бы распространить на любой репортерный белок. Достоверность этих правил ученые подтвердили в тесте на других флуоресцентных белках.
Авторы работы планируют превратить свой подход в платформу для скрининга антибиотиков на предмет ингибирования, специфичного для рибосом, а также для исследования биотехнологических применений сконструированных рибосом.
Рибосомы
Рибосома — важнейший органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.
Константа седиментации (скорость оседания в ультрацентрифуге) рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), бактериальных клеток (а так же митохондрий и пластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно).
Содержание
История исследований рибосомы
Механизм трансляции
Трансляция — синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). мРНК связывается с малой субъединицей рибосомы, когда происходит узнавание 3′-концом 16S рибосомной РНК комплементарной последовательности Шайн-Далгарно, расположенной на 5′-конце мРНК (у прокариот), а также позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. Ассоциация малой и большой субъединиц происходит при связывании формилметионил-тРНК (fMET-тРНК) и участии факторов инициации (IF1, IF2 и IF3 у прокариот; их аналоги и дополнительные факторы участвуют в инициации трансляции у эукариотических рибосом). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.
После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-центре. Следующим шагом является движение деацилированной тРНК из Р- в Е (exit-) центр, а пептидил-тРНК из А- в Р-центр. Этот процесс называется транслокация и происходит с помощью фактора EF-G. тРНК, комплементарная следующему кодону мРНК, связывается с А-центром рибосомы, что ведет к повторению описанных шагов. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Обрыв полипептидной цепи и диссоциация субъединиц (для приготовления к связыванию следующей мРНК и синтезу соответствующего белка) происходит при участии факторов (RF1, RF2, RF3, RRF в прокариотах).
Ссылки
Внешние ссылки
Сайт одного из ведущих учёных по исследованию структуры рибосом, содержит большое количество иллюстраций, в том числе анимированных [1] (англ.)