Что такое система исчисления информатика

Что такое система исчисления информатика

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Системы счисления»

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Символы, при помощи которых записывается число, называются цифрами.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные.

Позиционные системы счисления

Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).

Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.

Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:

IVXLСDМ
1510501005001000

С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).

Правила записи чисел в римской системе счисления:

Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.

Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:

Алфавит и основание системы счисления

Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:

Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.

Развёрнутая форма представления числа

Системы счисления, используемые в вычислительной технике

Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.

Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.

Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.

Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.

Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:

Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.

Решение задач

1. Какое число записано с помощью римских цифр: CLVI

Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1

Решение: Пользуемся формулой:

a1 = 3; a2 = B; a3 = F; a4 = A

Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160

3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0

Решение: Пользуемся формулой:

Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478

Алгоритмы перевода в системы счисления по разным основаниям

Алгоритм перевода чисел из любой системы счисления в десятичную

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую

Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую

Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую

Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n

Решение задач

1. Переведём в 10-ую с.с. число: 0,1235

Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:

Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410

Ответ: 0,1235 = 0,30410

2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.

Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.

4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:

Переводим целую и дробную часть:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16

5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления

Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :

Источник

Системы исчисления

Память человека удивительная штука, несмотря на все архивы, исторические записи и сводки нам свойственно забывать все — даже имена великих изобретателей. Не один историк не сможет ответить на вопрос, кто был открывателем колеса или гончарного круга. Также никто не сможет вспомнить, кто первый задал вопрос, который мы используем каждый день: «Сколько?», придумав тем самым первую систему исчисления.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Введение

Потребность в счете возникла у людей с давних времен. Ученые археологи нашли много записей времен пещерного человека, с помощью которых они обозначали количество убитых животных, добытых шкур и собранного урожая. Так в 1937 году в Моравии была найдена кость с 55 зарубками. По мнению ученых они обозначали количество бизонов добытых вождем племени.

С развитием технологий, счет находил применение во всех областях социальной жизни человечества – астрономии, налогообложении и промышленности. Сейчас вычисления активно используются в информатике для представления информации в электронно-вычислительных машинах. В этой статье вы узнаете, что такое система исчисления, изучите основные определения, которые помогут вам лучше разобраться в теме, выясните, что такое позиционные и непозиционные системы исчисления и чем они отличаются.

Основные положения

Для того чтобы разобраться что такое системы исчисления ниже приведены главные понятия, которые вам предстоит понять и запомнить. Без них вы просто не сможете двигаться дальше. Итак…

Число – абстрактная мера измерения количества чего-либо.

Цифры — знаки, с помощью которых мы представляем число.

Системой исчисления – называется совокупность правил записи чисел, с помощью набора цифровых знаков.

Теперь я попробую объяснить смысл этого определения для чайников. У вас есть набор символов – необязательно это могут быть числа, которые с помощью неких приемов и правил представляются как «цифровой код».

Алфавит (он же код) – набор знаков, используемых для записи числа.

Числовой разряд – место «позиция» знака (цифры) в числе.

После того как вы разобрались в том, что здесь написано можно перейти к следующему пункту.

Классификация

Системы исчисления можно разделить на три вида – позиционные, непозиционные и смешанные.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Позиционные

Примеры позиционных систем счислений и их использование в математике и информатике:

Непозиционные

Примеры непозиционных нумераций

Смешанные

Этот материал в школьную программу не входит и его достаточно сложно объяснить школьникам, но я все-таки попробую. В смешанной системе исчисления числа с основанием P можно представить числами с основанием Q. Также здесь должно выполняться неравенство Q

Что такое основание

После того как мы разобрали классификацию, можно рассказать про такое понятие как основание.

Основание – количество знаков, которые используются для отображения символов в данной системе счисления.

В математике и информатике записывается так:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Читается как «Двадцать пять по основанию десять» и значит то, что в данном алфавите имеется десять знаков для записи числа. Данное определение используется только в позиционных системах исчисления. Запись с нижним индексом используется для удобства, при работе с числами нескольких видов.

Заключение

На этом всё, теперь вы знакомы с таки понятием как система исчисления в информатике. Знаете, какие они бывают (позиционные и непозиционные), на какие группы делятся, ознакомлены с основными положениями и знаете что такое основание. После освоения этого материала можете смело приступать к другим темам – таким как перевод из одной системы в другую и выполнение арифметических операций. А также, в этом разделе, вы найдете несколько интересных статей. Например, про то, как представляется память в персональном компьютере или историю непозиционных чисел.

Источник

Информатика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Развиваясь, древний человек стал испытывать потребность в способах выражения количества. Подсчет убитых животных, количество врагов или соседей – причин становилось все больше. Сначала люди использовали только понятия «один», «много». После стали использовать понятие «пара», чтобы обозначить два предмета, это намного облегчило жизнь.

Постепенно перешли к использованию подручных средств – пальцев на руках и ногах, зарубок на коре дерева, кости животного или узелков на канате. Именно такие примитивные «счетные машины» позволили через тысячи лет узнать, что предки умели не просто считать, но даже умудрялись фиксировать результаты подсчета.

Кроме зарубок и узелков появилась потребность в символах, выражающих большее количество чего-либо, чем «один». Тогда были придуманы первые знаки для выражения больших значений. Так, египтяне, использовали знаки для цифр 1, 5, 10. Число 324 в их системе выглядело так:

А описание чисел при помощи специальных знаков и является системой счисления.

Системы счисления – виды, особенности

Система счисления (СС) – способ выражения чисел при помощи специальных правил и знаков, которые называются цифрами.

Все существующие системы делят на 2 группы:

Чтобы выразить число 475, достаточно по порядку написать 3 символа, 475, выражая 5 единиц, 7 десятков и 4 сотни.

К этой группе также относятся СС с различными основаниями (2,8,16).

Еще одна особенность – чтобы выразить число и не использовать сотни символов, применяется прибавление и вычитание. Написать 475 римскими знаками можно так CCCCXXXXXXXIIIII, но это нерационально. Если отнимать или прибавлять цифры, получится меньшее количество символов – CDLXXV. Цифра слева означает, что ее нужно отнять от большего числа, а справа – прибавить.

Правильным считается тот вариант, при котором получается меньше символов.

Интересно. Первой позиционной СС была вавилонская и была она шестнадцатиричная! А в 19 веке использовали двенадцатеричную СС.

Алфавит СС – знаки, которые используются для обозначения цифр.

Основание – количество знаков, которыми кодируются числа. Еще оно показывает отличие между цифрами на разных позициях. Основание – целое число, начиная с 2.

Важно. Если в тексте идет речь о различных системах, то чтобы уточнить, какая используется основа, ставится подстрочный знак: 12548, 011001112. Примеры? Если же обозначения нет, по умолчанию это десятичная (12549).

Разряд – положение, позиция обозначения цифры в числе. Пример?

Непозиционные СС, их особенности

Первоначально древние люди ставили отметки (черточки-зарубки, точки), чтобы обозначить количество того или иного предмета. Отклики этого подхода все еще встречаются (полоски у военных, счетные палочки).

Постепенно от единиц они переходили к группам предметов по 3, 5, 10 единиц. Постепенно такие группы стали обозначаться определенными символами, что позволило сократить размер записи.

Римская СС

В ней определенным цифрам отвечают латинские буквы. Их сумма и будет числом.

Основные рекомендации при пользовании римскими цифрами:

Таблица римских цифр

Недостаток этой СС в том, что для больших чисел недоступны операции сложения или другие, ещё она сложная и громоздкая. Зато римские цифры отлично вписались там, где нужна нумерация и эстетика: циферблаты, номера глав, списки, серии документов.

Основные позиционные СС, правила перевода

Двоичная система счисления

Систему, на которой основывается работа компьютеров, придумал гениальный немецкий ученый Г.В. Лейбниц (еще до 19 века!). Он придумал и описал СС, в которой все вычисления проводятся при помощи двух простейших символов – 0 и 1.

Компьютер, как механическое устройство, получает команды в виде двоичной кодировки. Он не в силах понять сложные задания, человеческую речь, музыку или тысячи оттенков, а переводя/кодируя всю необходимую информацию при помощи 0 и 1 (сеть, отсутствие сети), можно передать ему любые команды или информацию. Естественно, такие задания выглядят как огромные массивы двух знаков.

Алгоритм перевода чисел из десятичной в двоичную систему:

Этот порядок действия позволят переводить в любую позиционную СС. В данном случае, основа – 2, остаток 2 +7*10 1 +9*10 0 = 57910.

Обычно мы пользуемся свернутой формой записи чисел, то есть без разбивки на разряды и умножения на основу.

А чтобы было легче, пользуются готовой таблицей степеней 2.

Альтернативный способ преобразования для гуманитариев

Для начала нужно написать степени двойки, начиная с самой большой:

Далее нужно отнимать от числа максимальную степень двойки и напротив нее ставить 1, если есть в исходном варианте или 0, если его нет.
Перевод числа 579

Если же оно на 1 больше, то число будет начинаться и заканчиваться на 1, а внутри – сплошные 0.

Основой такой системы является 8, а числа восьмеричной системы 0-7. Данная система счисления является позиционной и целочисленной. Применяется в сферах, связанных с цифровыми технологиями, особенно в Linux-программном обеспечении (права доступа, исполнения).

Пример: Перевести 5798 из десятичной в восьмеричную систему счисления:

Обратный перевод из восьмеричной СС в десятичную:

11038 = 1∙8 3 +1∙8 2 +0∙8 1 +3∙8 0 = 512+64+0+3 = 57910

Альтернативный вариант таблицы степеней

Шестнадцатеричная СС

Это целочисленная система с основанием 16 (символы шестнадцатеричной системы счисления 0-9 и буквы A – F). Используется в реализации компьютерного программирования и документации на низком уровне, так как 8-битный байт, для записи которого удобно использовать 2 цифры из шестнадцатеричной системы.

Стандарт Юникод использует 4 и более символов 16-ой СС.

Для записи цвета из красного, зеленого и синего (R, G и B) также используют эту систему.

Алгоритм преобразования чисел в 16СС

Способ преобразования аналогичный предыдущим – расписывание числа как многочлена с учетом степеней 16. Для этого число делится на 16, в итоге – перечень остатков от деления, записанных наоборот.

В сети есть калькуляторы, способные выполнять преобразование чисел в различные СС и обратно (некоторые даже с детальным описанием процесса).

Арифметика для 2СС

Принципы выполнения простейших арифметических операций одинаковы для любых позиционных систем, независимо от основы:

Особенности арифметики СС с разными основами:

Примеры арифметических операций:

Для удобства разработаны готовые таблицы сложения в различных системах:

Сложение в 8-ой СС в 16СС

С их помощью можно быстро суммировать в различных СС.

Сложение для разных СС на примере 15 и 6:

Если необходимо сложить числа из разных систем, их приводят к одной основе. Самым простым вариантом будет перевод в десятичную систему, решение простого примера и перевод результата в любую из систем.

Рассмотрим сумму 438 и 5616. Результат можно выразить в любой СС, но проще привести к 8- или 16-ричной:

Переводим число 56 в восьмеричную через двоичную:

Умножение в 8-ой СС

Сравнение систем

СС могут быть с произвольной основой, но популярны 2,8,10,16-ые.

Сравнительная таблица разных систем счисления:

Перевод числа 75 в разные системы:

Правила перевода из двоичной, восьмеричной и шестнадцатеричной в 10СС:

Исходный вариант следует разделить на тройки цифр, с крайней справа. Если не хватает, старший разряд дополнить 0. Далее под каждой триадой ставится подходящий символ из 8‑ой системы.

Рассмотрим перевод на примере числа 579, которое соответствует 10010000112

Правила перевода из двоичной в шестнадцатеричную систему счисления:

Число разбивается по 4 знака, начиная справа (с меньшего разряда). Если не будет хватать символов у старшего разряда, тетраду дополняют нулями.

Сравнительный перевод дробей в СС

Чтобы перевести правильные дроби из 10-ой СС в другие позиционные, следует придерживаться правила, которое хорошо видно на примере перевода числа 0,35:

Удобно писать над каждой цифрой порядок, а дальше ее умножить на основу СС в степени разряда.

Перевод целых и дробей в 2СС, 8СС, 16СС:

Таблицы истинности

При помощи тех же нулей и единиц создаются таблицы истинности логических выражений, в которых описаны всевозможные варианты.

Основные логические операции

Например, конъюнкция является одной из логических операций. Она является истиной только в том случае, если два высказывания имеют истинные значения.

Логические переменные таблицы истинности обозначают p и q, а их значения выражают при помощи 0 и 1, где 0 – ложь, 1 – истина:

Фрагмент таблицы истинности для конъюнкции.

Так выражаются условия для всех логических операций.

Применяются таблицы истинности еще с начала 20 века в алгебре, логике, программировании.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 1.1. Системы счисления

Информатика. 8 класса. Босова Л.Л. Оглавление

Ключевые слова:

1.1.1. Общие сведения о системах счисления

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа (рис. 1.1), называются цифрами, а их совокупность — алфавитом системы счисления.

В любой системе счисления цифры служат для обозначения чисел, называемых узловыми; остальные числа (алгоритмические) получаются в результате каких-либо операций из узловых чисел.

Пример 1. У вавилонян узловыми являлись числа 1, 10, 60; в римской системе счисления узловые числа — это 1, 5, 10, 50, 100, 500 и 1000, обозначаемые соответственно I, V, X, L, С, D, М.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Рис. 1.1. Знаки, используемые для записи чисел в различных системах счисления

Системы счисления различаются выбором узловых чисел и способами образования алгоритмических чисел. Можно выделить следующие виды систем счисления:

Простейшая и самая древняя система — так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ — палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарную систему ещё называют системой бирок.

Система счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа.

Пример 2. В древнеегипетской системе счисления числа 1, 2, 3, 4, 10, 13, 40 обозначались соответственно следующим образом:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Те же числа в римской системе счисления обозначаются так: I, II, III, IV, X, XIII, XL. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа.Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Десятичная система

Десятичная система записи чисел, которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления, — пример позиционной системы счисления. Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Алгоритмические числа образуются в ней следующим образом: значения цифр умножаются на «веса» соответствующих разрядов, и все полученные значения складываются. Это отчётливо прослеживается в числительных русского языка, например: «три-ста пять-десят семь».

Основанием позиционной системы счисления может служить любое натуральное число q > 1. Алфавитом произвольной позиционной системы счисления с основанием q служат числа 0, 1, …, q—1, каждое из которых может быть записано с помощью одного уникального символа; младшей цифрой всегда является 0.

Основные достоинства любой позиционной системы счисления — простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любых чисел.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

Запись числа по формуле (1) называется развёрнутой формой записиСвёрнутной формой записи числа называется его представление в виде 1 ± an-1an-2…a1a0,a-1…a-m. 1 Далее будут рассматриваться только положительные целые числа.

Пример 3. Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

1.1.2. Двоичная система счисления

Двоичной системой счисления называется позиционная система счисления с основанием 2. Для записи чисел в двоичной системе счисления используются только две цифры: 0 и 1.

На основании формулы (1) для целых двоичных чисел можно записать:

Такая форма записи «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: необходимо вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.

Получим правило перевода целых десятичных чисел в двоичную систему счисления из формулы (1′).

Разделим аn-1 • 2 n-1 + аn-2 • 2 n-2 + … + а0 • 2 0 на 2. Частное будет равно аn-1 • 2 n-2 + … + а1, а остаток будет равен а0.

Полученное частное опять разделим на 2, остаток от деления будет равен а1.

Если продолжить этот процесс деления, то на n-м шаге получим набор цифр:

которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.

Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 4. Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Выписывая остатки от деления в направлении, указанном стрелкой, получим: 1110 = 10112.

Пример 5. Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

1.1.3. Восьмеричная система счисления

Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе счисления используются цифры: 0, 1,2, 3, 4, 5, 6, 7.

На основании формулы (1) для целого восьмеричного числа можно записать:

Например: 10638 = 1 • 8 3 + 0 • 8 2 + 6 • 8 1 + 3 • 8 0 = 56310.

Таким образом, для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в новой системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 6. Переведём десятичное число 103 в восьмеричную систему счисления.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

1.1.4. Шестнадцатеричная система счисления

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,…, 9. Для записи цифр с десятичными количественными эквивалентами 10, 11, 12, 13, 14, 15 обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3AF16 означает:

Пример 7. Переведём десятичное число 154 в шестнадцатеричную систему счисления.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

1.1.5. Правило перевода целых десятичных чисел в систему счисления с основанием q

Для перевода целого десятичного числа в систему счисления с основанием q следует:

Представим таблицу соответствия десятичных, двоичных, восьмеричных и шестнадцатеричных чисел от 0 до 2010.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

В Единой коллекции цифровых образовательных ресурсов (http://sc.edu.ru/) размещена интерактивная анимация «Преобразование десятичного числа в другую систему счисления» (135050). С её помощью можно понаблюдать за переводом произвольного целого числа от 0 до 512 в позиционную систему счисления, основание которой не превышает 16.

В размещённой там же виртуальной лаборатории «Цифровые весы» (135009) вы сможете освоить ещё один способ перевода целых десятичных чисел в другие системы счисления — метод разностей.

1.1.6. Двоичная арифметика

Арифметика двоичной системы счисления основывается на использовании следующих таблиц сложения и умножения:

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Пример 8. Таблица двоичного сложения предельно проста. Так как 1 + 1 = 10, то 0 остаётся в младшем разряде, а 1 переносится в старший разряд.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Пример 9. Операция умножения двоичных чисел выполняется по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Что такое система исчисления информатика. Смотреть фото Что такое система исчисления информатика. Смотреть картинку Что такое система исчисления информатика. Картинка про Что такое система исчисления информатика. Фото Что такое система исчисления информатика

Таким образом, в двоичной системе счисления умножение сводится к сдвигам множимого и сложениям.

1.1.7. «Компьютерные» системы счисления

В компьютерной технике используется двоичная система счисления, обеспечивающая ряд преимуществ по сравнению с другими системами счисления:

Обмен информацией между компьютерными устройствами осуществляется путём передачи двоичных кодов. Пользоваться такими кодами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) на некоторых этапах разработки, создания, настройки вычислительных систем заменяют двоичные коды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа.

С помощью ресурса «Интерактивный задачник, раздел “Системы счисления»» (128659), размещённого в Единой коллекции цифровых образовательных ресурсов, можно проверить, насколько прочно вы усвоили изученный в этом параграфе материал.

Самое главное о системе счисления

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа, называются цифрами, а их совокупность — алфавитом системы счисления.

Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Основанием позиционной системы счисления может служить любое натуральное число q > 1.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

10. Верны ли следующие равенства? а) 334 = 217;
б) 33
8 = 214.

11. Найдите основание х системы счисления, если: а) 14х = 910;
б) 2002
х = 13010.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *