Что такое сложение вычитание деление умножение

Основные арифметические действия: определения, примеры

В данной публикации мы рассмотрим определения, общие формулы и примеры 4 основных арифметических (математических) действий с числами: сложения, вычитания, умножения и деления.

Сложение

Сложение – это математическое действие, в результате которого находится сумма.

Обозначается сложение специальным знаком + (плюс), а сумма – Σ.

Пример: найдем сумму чисел.
1) 3, 5 и 23.
2) 12, 25, 30, 44.

Ответы:
1) 3 + 5 + 23 = 31
2) 12 + 25 + 30 + 44 = 111.

Вычитание

Вычитание чисел – это обратное сложению математическое действие, в результате коротого находится разность ( c ). Например:

Обозначается вычитание специальным знаком (минус).

Пример: найдем разность чисел.
1) 62 минус 32 и 14.
2) 100 минус 49, 21 и 6.

Ответы:
1) 62 – 32 – 14 = 16.
2) 100 – 49 – 21 – 6 = 24.

Умножение

Умножение – это арифметическое действие, в результате которого вычисляется произведение.

Обозначается умножение специальными знаками · или x.

Пример: найдем произведение чисел.
1) 3, 10 и 12.
2) 7, 1, 9 и 15.

Ответы:
1) 3 · 10 · 12 = 360.
2) 7 · 1 · 9 · 15 = 945.

Деление

Деление чисел – это обратное умножению действие, в результате коротого вычисляется частное ( d ). Например:

Обозначается деление специальными знаками : или /.

Пример: найдем частное чисел.
1) 56 разделим на 8.
2) 100 разделим на 5, затем на 2.

Ответы:
1) 56 : 8 = 7.
2) 100 : 5 : 2 = 10 (, ).

Источник

Умножение, сложение, вычитание и деление целых чисел: основные свойства

Сложение целых чисел. Основные свойства

Коммутативное свойство сложения

Переместительное (коммутативное свойство) или переместительный закон.

От перемены мест слагаемых сумма не меняется.

Согласно этому свойству, справедливо равенство:

Свойство коммутативности работает вне зависимости от знака.

Ассоциативное свойство сложения

Сочетательное (ассоциативное свойство) или сочетательный закон.

Сложение целого числа с суммой двух целых чисел эквивалентно сложению суммы двух первых чисел с третьим.

a + b + c = a + b + c

Примечание: данное свойство применимо и для большего количества слагаемых.

Вот несколько примеров. Согласно свойству ассоциативности справедливы равенства:

Свойства сложения, связанные с числом 0

Прибавление нуля к любому целому числу не меняет этого числа.

2. Сумма любого целого числа и противоположного ему числа равна нулю.

Умножение целых чисел. Основные свойства

Как и в случае со сложением, все свойства умножения натуральных чисел переносятся на целые числа.

Для умножения также действуют переместительный и сочетательный (коммутативный и ассоциативный) законы.

Переместительное свойство умножения

От перемены мест множителей произведение не меняется.

Сочетательное свойство умножения

Сочетательное свойство для умножения эквивалентно сочетательному свойству сложения. В буквенном виже оно записывается следующим образом:

a · ( b · c ) = ( a · b ) · c

Примечание: данное свойство применимо и для большего количества множителей.

В соответствии с этим свойством можно говорить о справедливости следующих равенств:

Умножение числа на нуль

Результатом умножения любого целого числа на нуль является число нуль.

Справедливо и обратное: произведение двух целых чисел a и b равно нулю, если хотя бы один из множителей равен нулю.

Умножение числа на единицу

Умножение любого целого числа на единицу дает в результате это число. Иными словами, умножение на единицу не изменяет умножаемое число.

a · ( b + c ) = a · b + a · c

Данное свойство часто используется при упрощении выражений, одновременно содержащих как операции сложения, так и умножения.

В совокупности с ассоциативным свойством и распределительным законом можно легко расписать произведение целого числа на сумму из более чем трех слагаемых, а также произведение сумм.

Вычитание целых чисел. Основные свойства

Основные свойства вычитания

Деление целых чисел. Основные свойства

Источник

Арифметика. Арифметические действия

Содержание

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножениеАрифметика. Арифметические действия
Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножениеОбратные арифметические действия
Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножениеСвойства арифметических действий
Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножениеПорядок выполнения арифметических действий
Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножениеУмножение натуральных чисел на 10, 100, 1000; и т.д.

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение

Арифметика. Арифметические действия

Арифметическим действием называют операцию, удовлетворяющую ряду свойств и позволяющую по нескольким данным числам найти новое число.

Арифметикой называют науку, изучающую простейшие свойства чисел и арифметических действий.

Существуют шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня.

Обратные арифметические действия

Вычитание – это арифметическое действие, обратное к сложению, деление – действие, обратное к умножению, извлечение корня – действие, обратное к возведению в степень.

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение

Свойства арифметических действий

Порядок выполнения арифметических действий

Сложение и вычитание называют действиями первой ступени, умножение и деление – действиями второй ступени, возведение в степень и извлечение корня – действиями третьей ступени.

Действия одной ступени выполняются в том же порядке, в каком они записаны в формуле.

Если в формуле содержатся действия разных ступеней, то сначала выполняют действия высших ступеней, а затем низших ступеней.

Если формула содержит скобки, то сначала выполняют действия в скобках. Скобки бывают круглыми, квадратными и фигурными, причем между ними нет никакой разницы.

Если скобки содержат другие скобки, то сначала выполняют действия во «внутренних» скобках.

Умножение натуральных чисел на 10, 100, 1000 и т.д.

Действительно, например, число 3610 состоит из трёх тысяч, шести сотен и одного десятка, поэтому

Источник

Порядок действий в математике

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные операции в математике

Порядок вычисления простых выражений

Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:

Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.

Что первое, умножение или деление? — По порядку слева направо.

Сначала умножение или сложение? — Умножаем, потом складываем.

Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Рассмотрим порядок арифметических действий в примерах.

Пример 1. Выполнить вычисление: 11- 2 + 5.

В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.

Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.

Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?

Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.

Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.

Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.

Например, в такой последовательности можно решить пример по действиям:

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение

Действия первой и второй ступени

В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.

С этими терминами правило определения порядка выполнения действий звучит так:

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Подставляем полученные значения в исходное выражение:

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.

Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.

И, как всегда, рассмотрим, как это работает на примере.

В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.

Подставляем полученное значение в исходное выражение:

Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:

Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!

Источник

Порядок выполнения действий, правила, примеры

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

В случае выражений без скобок порядок действий определяется однозначно:

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Решение

17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Что такое сложение вычитание деление умножение. Смотреть фото Что такое сложение вычитание деление умножение. Смотреть картинку Что такое сложение вычитание деление умножение. Картинка про Что такое сложение вычитание деление умножение. Фото Что такое сложение вычитание деление умножение.

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Решение

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Решение

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Решение

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.

( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *