Что такое сложные полупроводниковые соединения
Большая Энциклопедия Нефти и Газа
Сложный полупроводник
Сложные полупроводники типа AU BV используются для изготовления диодов, транзисторов, сверхвысокочастотных приборов на основе эффекта Гана, модуляторов инфракрасного излучения, приемников излучения, солнечных батарей, лазеров, датчиков Холла, магниторезисторов и других приборов. В табл. 82 приведены некоторые физико-химические свойства фосфидов, арсеиидов и антимонидов галлия и индия. [3]
Сложные полупроводники типа AHIBV используются для изготовления диодов, транзисторов, сверхвысокочастотных приборов на основе эффекта Гана, модуляторов инфракрасного излучения, приемников излучения, солнечных батарей, лазеров, датчиков Холла, иагниторезисторов и других приборов. [4]
Для многих сложных полупроводников не известны данные, необходимые для расчета концентраций примеси, создающей глубокие уровни ( положение энрегетических уровней, эффективные плотности состояний и др.) и компенсирующей ее простой донорной или акцепторной примеси. Тогда концентрацию такой примеси, необходимой для создания в монокристалле полупроводника требуемых свойств, например удельного электрического сопротивления, определяют экспериментально. Для этого выращивают монокристаллы из расплавов с различным содержанием легирующей примеси ( проценты по массе), как это показано на рис. 4.17 для легированного примесью железа полуизолирующего фосфида индия. [5]
Технология получения монокристаллов сложных полупроводников является более сложным процессом, чем получение элементарных полупроводников. [6]
Влияние химических примесей на свойства сложных полупроводников точно такое же, как и на элементарные полупроводники, хотя во многих материалах на количество носителей заряда оказывают влияние также и дефекты кристаллической решетки ( вакансии и междоузлия), возникающие вследствие неполной стехиометрии. Наблюдаются также изменения валентности, обусловленные присутствием примесей в кристалле. Так, одновалентный литий, содержащийся в NiO, приводит к образованию ионов трехвалентного никеля в равной концентрации; эти ионы трехвалентного никеля непосредственно определяют количество носителей тока, а следовательно, и проводимость. [15]
СЛОЖНЫЕ ПОЛУПРОВОДНИКИ
Соединения этого класса кристаллизуются либо в кубической структуре типа NaCl (PbS, PbSe, PbTe, SnTe, высокотемпературная модификация GeTe), либо в орторомбической структуре, которую можно рассматривать как деформированную решетку типа NaCl (GeS, GeSe, низкотемпературная модификация GeTe, SnS, SnSe). Связи между атомами в соединениях этого типа смешанные ионно-ковалентные.
Основное применение в полупроводниковом приборостроении имеют кристаллы халькогенидов свинца PbS, PbSe, PbTe. Это узкозонные полупроводники, ширина запрещенной зоны составляет, соответственно для PbS, PbSe, PbTe — 0,39, 0,27 и 0,32 эВ. Электрофизические свойства халькогенидов свинца сильно зависят от степени отклонения от стехиометрии: при избытке атомов свинца кристаллы имеют n-тип проводимости, при избытке халькогена — р-тип проводимости. Атомы элементов I группы (Na, Cu, Ag), замещают свинец и являются акцепторами, атомы трехвалентных металлов, заменяя свинец, являются донорами, донорами в этих материалах являются атомы галогенов.
Энергетические уровни большинства примесей в халькогенидах свинца сливаются с краем соответствующей зоны, поэтому концентрация носителей заряда в них практически не зависит от температуры, вплоть до наступления собственной электропроводности.
Тонкие пленки и поликристаллические слои халькогенидов свинца обладают высокой фоточувствительностью в далекой ИК-области спектра. Благодаря хорошим фотоэлектрическим свойствам халькогениды свинца используются для изготовления фоторезисторов и применяются в качестве детекторов ИК-излучения. Тонкопленочные детекторы на основе сульфида свинца работают в спектральном интервале 0,6—3 мкм и интервале температур 77—350 К в зависимости от предъявляемых требований и особенностей их применения. В список наиболее распространенных областей применения ИК-фотоприемников на основе сульфида свинца (PbS) входят звездные, спектрографические датчики, медицинские, исследовательские инструменты, сортирующие, счетные, контролирующие приборы, регистраторы пламени, системы определения положения тепловых источников, управление ракетами, следящие системы, исследования в области летательных аппаратов, измерение мощности в лазерных системах.
При низких температурах в халькогенидах свинца возможна эффективная излучательная рекомбинация, что позволяет создавать на их основе лазеры инжекционного типа. Халькогениды свинца широко используются в инфракрасной оптоэлектронике, в основном для изготовления лазеров и светодиодов, работающих в среднем и дальнем ИК-диапазонах. Кроме этого, халькогениды свинца обладают благоприятным сочетанием свойств для изготовления термоэлектрических генераторов. Твердые растворы на основе халькогенида свинца используются для изготовления фотоприемников с высокой спектральной чувствительностью в диапазоне 8—14 мкм. Халькогениды свинца относятся к числу хорошо известных перспективных термоэлектрических материалов, работающих в области средних температур (600 — 900 К). В последние годы интерес к этим материалам возрос в связи с возможностью значительного увеличения термоэлектрической добротности в тонкопленочных структурах на основе халькогенидов свинца.
Тройные полупроводниковые соединения
Полезное
Смотреть что такое «СЛОЖНЫЕ ПОЛУПРОВОДНИКИ» в других словарях:
ПОЛУПРОВОДНИКИ — широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… … Физическая энциклопедия
Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов… … Википедия
Полупроводники — широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… … Большая советская энциклопедия
ОКСИДНЫЕ ПОЛУПРОВОДНИКИ — ОКСИДНЫЕ ПОЛУПРОВОДНИКИ, бинарные химические соединения, один из компонентов которых металл, а другой кислород. К этому классу полупроводниковых материалов относятся такие вещества, как Cu2O, ZnO, CdO, NiO, Fe2O3, MnO, Mn3O4 и др. Это соединения… … Энциклопедический словарь
полупроводниковые материалы — полупроводники, применяемые для изготовления электронных приборов и устройств. Используют главным образом кристаллические полупроводниковые материалы (например, легированные монокристаллы кремния или германия, химические соединения некоторых… … Энциклопедический словарь
Абдуллаев, Гасан Мамедбагир оглы — Абдуллаев Гасан Мамедбагир оглы Дата рождения: 20 августа 1918(1918 08 20) Место рождения: деревня Яйджи Джульфинский район Нахичеванской АР Дата смерти: 1 сентября 1 … Википедия
Абдуллаев Гасан Мамед Багир оглы — (р. 20.8.1918, с. Яйджи, ныне Джульфинский район Нахичеванской АССР), советский физик, член корреспондент АН СССР (1970), академик (1967) и президент (с 1970) АН Азербайджанской ССР. Член КПСС с 1942. Окончил Азербайджанский педагогический… … Большая советская энциклопедия
Абдуллаев — I Абдуллаев Абдулхак Аксакалович (р. 30.12.1918, город Туркестан, ныне Казахской ССР), живописец, заслуженный деятель искусств Узбекской ССР (1950). Учился в Самаркандском художественном техникуме (1931 36) у Л. Л. Бурэ, 3. М. Ковалевской … Большая советская энциклопедия
Полупроводник — Монокристаллический кремний полупроводниковый материал, наиболее широко … Википедия
Полупроводник — (Semiconductor) Определение полупроводника, строение полупроводников и принцип действия Информация об определении полупроводника, строение полупроводников и принцип действия Содержание Содержание 1. Исторические 2. Свойства 3. Строение… … Энциклопедия инвестора
Сложные полупроводники, их соединения
Свойства и виды (простые и сложные) полупроводниковых материалов. Основные методы промышленного получения монокристаллов соединений: метод Чохральского, направленная кристаллизация. Классификация и общая характеристика полупроводниковых соединений.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | доклад |
Язык | русский |
Дата добавления | 15.10.2011 |
Размер файла | 18,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Научно-технический прогресс немыслим без электроники. Интенсивное развитие электроники связано с появлением новых разнообразных полупроводниковых приборов и интегральных микросхем, которые находят широкое применение в вычислительной технике, автоматике, радиотехнике и телевидении, в установках измерительной техники, медицины, биологии и т.д.
Полупроводники представляют собой обширную группу веществ, занимающих по величине удельного сопротивления промежуточное положение между диэлектриками и проводниками. Диапазон удельного сопротивления полупроводников при комнатной температуре условно ограничивают значениями 106-108Ом-м. Отличительным свойством полупроводников является сильная зависимость их удельного сопротивления от концентрации примесей. При введении примесей изменяется не только значение проводимости, но и характер ее температурной зависимости. У большинства полупроводников удельное сопротивление зависит также от температуры и других внешних энергетических воздействий (свет, электрическое и магнитное поле, ионизирующее излучение и т.д.). На управлении с помощью тепла, света, электрического поля, механических усилий электропроводностью полупроводников основана работа терморезисторов (термисторов), фоторезисторов, нелинейных резисторов (варисторов), тензорезисторов.
Полупроводниковые материалы по химическому составу можно разделить на простые и сложные.
СЛОмЖНЫЕ ПОЛУПРОВОДНИКИм, неорганические химические соединения, обладающие полупроводниковыми свойствами (см. ПОЛУПРОВОДНИКИ). К сложным полупроводниковым материалам относятся также аморфные и стеклообразные полупроводники (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ).
Полупроводниковые соединения A III B V
Являются ближайшими электронными аналогами кремния и германия, относятся к алмазоподобным полупроводникам. Образуются в результате взаимодействия элементов IIIА подгруппы Периодической системы (бора, алюминия, галлия, индия) с элементами VА подгруппы (азотом, фосфором, мышьяком и сурьмой). Висмут и таллий не образуют соединений рассматриваемого ряда. За счет частичного перераспределения электронов атомы AIII и BV в такой структуре оказываются разноименно заряженными. Поэтому связи в кристаллах AIIIBV не полностью ковалентные, а частично ионные. Соединения AIIIBV принято классифицировать по металлоидному ряду: нитриды, фосфиды, арсениды, антимониды. Фосфиды, арсениды и антимониды имеют кристаллическую кубическую решетку типа сфалерита (см. СФАЛЕРИТ). Для нитридов характерна гексагональная решетка типа вюрцита. В решетке того и другого типов каждый атом элемента III группы находится в тетраэдрическом окружении четырех атомов элемента V группы и наоборот. Структура сфалерита не имеет центра симметрии.
В кристаллах AIIIBVреализуется донорно-акцепторная связь. Из четырех ковалентных связей, которыми каждый атом встраивается в решетку, три образуются обобществлением валентный электронов атомов AIII и BV, а четвертая связь осуществляется неподеленной парой валентных электронов атомов BV.
Полупроводниковые соединения образуют гомологический ряд, в котором наблюдается закономерное изменение многих свойств при изменении атомных номеров компонентов. Внутри каждой группы соединений аналогов (фосфидов, арсенидов и антимонидов) наблюдается уменьшение температуры плавления, твердости и ширины запрещенной зоны с ростом суммарного атомного номера и атомных масс входящих в соединение элементов и возрастание подвижности носителей заряда, особенно электронов. Подвижность носителей заряда в полупроводниках AIIIBV определяется в основном рассеянием электронов и дырок на оптических тепловых колебаниях решетки.
Основным методом промышленного получения монокристаллов соединений AIIIBV является метод Чохральского, для разлагающихся соединений в варианте с жидкостной герметизацией расплава (см. методы выращивания кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ)). Используются также методы направленной кристаллизации. Легирование кристаллов с целью получения необходимых электрофизических свойств осуществляется в процессе выращивания.
Наиболее широко применение среди этой группы материалов имеют арсенид галлия (см. ГАЛЛИЯ АРСЕНИД) и фосфид индия (см. ИНДИЯ ФОСФИД). Для изготовления ряда приборов электронной техники применяются также арсенид индия (см. ИНДИЯ АРСЕНИД), антимонид индия (см. ИНДИЯ АНТИМОНИД), антимонид галлия (см. ГАЛЛИЯ АНТИМОНИД) и другие материалы.
Соединения AIIIBVиспользуются в производстве полупроводниковых приборов различного назначения: СВЧ-интегральные схемы, светодиоды, фоторезисторы, лазеры, приемники ИК-излучения, туннельные диоды и др.
На основе соединений AIIIBV образуются твердые растворы замещения. При изменении состава твердого раствора можно управлять шириной запрещенной зоны соединений. Изменение ширины запрещенной зоны сопровождается соответствующим смещением спектров оптического поглощения и пропускания, люминесценции и фоточувствительности. С изменением состава твердого раствора изменяются значения диэлектрической проницаемости и показателя преломления в ряде систем при определенных соотношениях между компонентами можно получить качественно новое сочетание свойств. Например, в твердых растворах GaAs1-yPy и AlxGa1-xAs сочетаются достаточно широкая запрещенная зона и высокий квантовый выход межзонной излучательной рекомбинации. На основе тройных и четверных твердых растворов соединений AIIIBVсоздаются гетеропереходы (см. ГЕТЕРОПЕРЕХОД) и приборы на их основе.
Полупроводниковые соединения A II B VI
К соединениям AIIBVI относят халькогениды цинка, кадмия и ртути. Среди них выделяют сульфиды, селениды и теллуриды. Оксиды указанных металлов в эту группу полупроводниковых соединений не входят (см. Оксидные полупроводники (см. ОКСИДНЫЕ ПОЛУПРОВОДНИКИ)). Соединения AIIBVI являются алмазоподобными полупроводниками и кристаллизуются в структуре сфалерита или вюрцита. CdS, CdSe, CdTe, ZnS могут существовать как в кубической структуре сфалерита, так и в гексагональной структуре вюрцита.
Халькогениды обладают высокой чувствительностью к излучению в области от инфракрасной до рентгеновской. У них достаточно сильно проявляются фоторезистивные и люминесцентные свойства, некоторые их них обладают пьезоэлектрическим эффектом.
Монокристаллы ZnS и спеченные поликристаллические блоки обладают высокой прозрачностью в области ИК-спектра, и используются в качестве входных окон и линз в оптико-электронных устройствах. Наличие пьезоэлектрического эффекта у пленок ZnS позволило применять их в некоторых акустических устройствах. Сульфид цинка (ZnS) и сульфид цинка-кадмия ZnXCd1-XS используются для изготовления квантоскопов голубого и синего цвета излучения, квантоскопов и приемников УФ-излучения.
Селенид цинка ZnSe проявляет фоторезистивные, фото- и электролюминесцентные свойства, имеет высокую прозрачность в ИК-области. Оптическую керамику на основе ZnSe применяют для изготовления входных окон и линз в оптико-электронных устройствах. Теллурид цинка ZnTe обладает электролюминесцентными и фоторезистивными свойствами.
Теллурид кадмия (CdTe) и теллурид цинка-кадмия (CdZnTe) используются для изготовления электрооптических модуляторов, приемников радиационного и ИК-излучения и других оптических элементов ИК-оптических систем. Селенид кадмия, сульфид и сульфоселенид кадмия используются для изготовления преобразователей длин волн лазерного излучения, квантоскопов красного, оранжевого, желтого и зеленого цвета излучения. монокристалл кристализация полупроводниковое соединение
Полупроводниковые соединения A IV B VI
Соединения этого класса кристаллизуются либо в кубической структуре типа NaCl (PbS, PbSe, PbTe, SnTe, высокотемпературная модификация GeTe), либо в орторомбической структуре, которую можно рассматривать как деформированную решетку типа NaCl (GeS, GeSe, низкотемпературная модификация GeTe, SnS, SnSe). Связи между атомами в соединениях этого типа смешанные ионно-ковалентные.
Энергетические уровни большинства примесей в халькогенидах свинца сливаются с краем соответствующей зоны, поэтому концентрация носителей заряда в них практически не зависит от температуры, вплоть до наступления собственной электропроводности.
Тонкие пленки и поликристаллические слои халькогенидов свинца обладают высокой фоточувствительностью в далекой ИК-области спектра. Благодаря хорошим фотоэлектрическим свойствам халькогениды свинца используются для изготовления фоторезисторов и применяются в качестве детекторов ИК-излучения. Тонкопленочные детекторы на основе сульфида свинца работают в спектральном интервале 0,6—3 мкм и интервале температур 77—350 К в зависимости от предъявляемых требований и особенностей их применения. В список наиболее распространенных областей применения ИК-фотоприемников на основе сульфида свинца (PbS) входят звездные, спектрографические датчики, медицинские, исследовательские инструменты, сортирующие, счетные, контролирующие приборы, регистраторы пламени, системы определения положения тепловых источников, управление ракетами, следящие системы, исследования в области летательных аппаратов, измерение мощности в лазерных системах.
Тройные полупроводниковые соединения
Тройные полупроводниковые соединения образуются при возникновении sp3-гибридных связей и характеризуются тетраэдрическим расположением атомов в пространстве. Кристаллизуются в структуру сфалерита, вюрцита, халькопирита, но в одной из подрешеток содержатся атомы двух сортов, размещенные либо упорядоченно, либо неупорядоченно. В случае неупорядоченного размещения атомов двух сортов в соответствующей решетке возникает структура сфалерита или вюрцита, в случае упорядоченного размещения кубическая решетка испытывает тетрагональное искажение и возникает структура халькопирита (антихалькопирита), которую можно рассматривать как удвоенную вдоль оси с в направлении ячейку сфалерита.
Однако в полупроводниковом приборостроении лишь ограниченное количество тройных полупроводниковых соединений находит применение.
Размещено на Allbest.ru
Подобные документы
Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015
Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016
Основные свойства материалов. Обзор современного состояния производства полупроводниковых соединений. Расчет легирования кристалла. Технологический процесс выращивания монокристаллического фосфида галлия марки ФГДЦЧ-5-17. Допущения Пфанна и Боомгардта.
курсовая работа [1,2 M], добавлен 02.04.2014
Технологический маршрут производства полупроводниковых компонентов. Изготовление полупроводниковых пластин. Установка кристаллов в кристаллодержатели. Сборка и герметизация полупроводниковых приборов. Проверка качества и электрических характеристик.
курсовая работа [3,0 M], добавлен 24.11.2013
Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.
курсовая работа [2,0 M], добавлен 03.12.2010
Разработка прибора, предназначенного для изучения полупроводниковых диодов. Классификация полупроводниковых диодов, характеристика их видов. Принципиальная схема лабораторного стенда по изучению вольтамперных характеристик полупроводниковых диодов.
курсовая работа [1,2 M], добавлен 20.11.2013
Эксплуатация полупроводниковых преобразователей и устройств: недостатки полупроводниковых приборов, виды защит. Статические преобразователи электроэнергии: трансформаторы. Назначение, классификация, виды, конструкция. Работа трансформатора под нагрузкой.
лекция [190,2 K], добавлен 20.01.2010
Полупроводниковые соединения
Простые полупроводники не всегда отвечают требованиям современного производства полупроводниковых приборов. Для создания материалов с различными свойствами используют сложные неорганические и органические полупроводниковые соединения.
1) Сложные полупроводники типа А IV B IV
Используют для создания полупроводниковых приборов, работающих при температурах до 700 0 С, применяют для серийного выпуска варисторов (нелинейных сопротивлений), светодиодов, выпрямителей и туннельных диодов.
2) Сложные полупроводники типа А III B V
Ширина запретной зоны измеряется в широких пределах, имеют высокую подвижность электронов, поглощают электромагнитное излучение, обладают фотопроводимостью, самопроизвольным и вынужденным излучением.
Используют для создания высокочастотных полупроводниковых приборов, туннельных диодов, датчиков низких температур и т.д.
3) Сложные полупроводники типа А II B VI
Двойные соединения халькогенов (сера, селен, теллур) с металлами II группы (цинк, кадмий, ртуть). Соединения с халькогенами (сульфиды, селениды, теллуриды) называют халькогенидами.
Ширина запретной зоны от 3,7эВ до 0,02эВ, температура плавления от 1830 до 670 0 С, обладают высокой чувствительностью к излучению от инфракрасного до рентгеновского спектра, ярко проявляя фоторезистивные и люминесцентные свойства, широкий диапазон электропроводность: от малых значений до высоких.
Используют для изготовления пленок обладающих высокимпьезомодулем, в качестве люминофоров (вещества, преобразующие поглощенную ими энергию в световое излучение) для всех видов люминесценции, как материалы для фоторезисторов.
4) Сложные полупроводники типа А IV B VI
Халькогениды свинца: сульфид свинца, селенид свинца, теллурид свинца.
Не растворяются в воде, медленно окисляются на воздухе, при низких температурах проявляется излучательная рекомбинация носителей заряда, обладают фоторезистивными свойствами.
Используют для создания лазеров инфракрасного диапазона, полупроводниковых пленок и термоэлементов.
5) Сложные полупроводники типа А V 2B VI 3
Обладают высокой проводимостью и фоточувствительностью.
Используют для изготовления фотопроводящих мишеней, передающих телевизионных пленок.
6) оксидные полупроводники– бинарные соединения полярного типа, в которых ясно различаются металлический и неметаллический (металлоидный) компоненты и которые могут рассматриваться как ионные соединения (закись меди, оксид цинка, двуокись титана, оксид железа, оксид никеля).
Преимущество оксидных полупроводников – технология их изготовления сравнительно проста. Смеси оксидов используют для изготовления терморезисторов (термисторов) с отрицательным температурным коэффициентом электрического сопротивления, фоторезисторов, варисторов, сопротивление которых сильно зависит от приложенного напряжения.
7) стеклообразные полупроводники – неорганические стекла. Стеклообразность – особый вид аморфного вещества, имеющего механические свойства сходные с твердыми кристаллическими веществами. Примесная проводимость отсутствует.
Полупроводниковыми свойствами обладают как кислородосодержащие стекла, так и бескислородные халькогенидные стекла.
Не достаточно изучены и не нашли широкого применения.
8) органические полупроводники
Имеют в структуре твердые органические полупроводниковые ароматические кольца с сопряженными связями. Подвижность носителей заряда ниже чем у германия, эластичные, способные образовывать пленки и волокна, являются высокопрочными материалами. Фотопроводимость растет с увеличением освещенности и температуры.
Делят на пять групп:
Применяют для изготовления терморезисторов с высокой температурной стабильностью пьезоэлемента, резонансных контуров в интегральных схемах радиационных дозиметров, квантовых генераторов, тензодатчиков с высокой чувствительностью, приборы на основе органических полупроводников, отличаются высокой механической и климатической устойчивостью.
Лекция 16, 17. МАГНИТНЫЕ МАТЕРИАЛЫ
Обладают способностью при внесении в магнитное поле намагничиваться, часть из них сохраняют намагниченность при прекращении воздействия магнитного поля.
Если по катушке с ферромагнитным сердечником пропустить переменный ток, то этот сердечник будет периодически перемагничиваться.
— кривая намагничивания – показывает зависимость намагниченности (М, А/м) или магнитной индукции (В, Тл) материала от напряженности внешнего поля (Н, А/м).
Кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании и отражает изменение магнитной индукции Вв зависимости от напряженности магнитного поля Н, которое создается в материале при намагничивании.
Зависимость В от Н технически чистого железа
Магнитная напряженность материала является разницей между магнитными напряженностями внешнего Нв (напряженность внешнего поля, при замкнутой цепи равна напряженности магнитного поля в материале) и размагничивающего Нр (в разомкнутой магнитной цепи на концах материала появляются магнитные полюса, создающие размагничивающее поле) полей.
Для характеристики поведения магнитных материалов в поле с напряженностью Н пользуются понятиями абсолютной магнитной проницаемости μ а(Гн/м) и относительной магнитной проницаемости μ 0(μ 0=1,257 мкГн/м).
Подставляя в формулу В и Н, получают различные виды магнитной проницаемости.
Относительную магнитную проницаемости материала получают по основной кривой намагничивания, ее значение определяется при очень слабых полях (примерно 0,1А/м).
В сильных полях в области насыщения магнитная проницаемость стремится к единице.
— потери энергии при перемагничивании
Необратимые потери электрической энергии, выделившийся в материале в виде тепла.
Потери на перемагничивание магнитного материала:
— потери на гистерезис – создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неоднородности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.
Потери на гистерезис:
Рвт(превосходят потери на гистерезис при высоких частотах) – вызываются частично вихревыми токами, которые возникают при изменении направления и напряженности магнитного поля, которые также рассеивают энергию:
где b – коэффициент, зависящий от удельного электрического сопротивления, объема и геометрических размеров образца.
Рп – потери на последействие (зависят от состава и термической обработки магнитного материала, появляются на высоких частотах), связаны с остаточным изменением магнитного состояния после изменения напряженности магнитного поля. Потери на последствие (магнитную вязкость) необходимо учитывать при использовании ферромагнетиков в импульсном режиме.