Что такое сопротивление цепи
Сопротивление электрической цепи.
Сопротивление электрической цепи – это величина, которая описывает способность проводника не пропускать электрический ток через себя. Сопротивление электрической цепи равняется напряжению на концах проводника, деленному на силу тока, которая течет по данному проводнику.
Сопротивление электрической цепи переменного тока и переменного электрического поля можно характеризовать с помощью таких понятий, как импеданс и волновое сопротивление. Сопротивление, или резистор – это не только физическое явление, но и радиоэлектронная деталь, которая позволяет создавать активное сопротивление в электрической цепи.
Как правило, сопротивление электрической цепи обозначается буквой R или r. Данную величину принимают за константу в определенных пределах для конкретного проводника. Формула для расчета сопротивления электрической цепи:
R — сопротивление электрической цепи, Ом;
U — разность электрических потенциалов, или напряжение, на концах проводника, В;
I — сила тока, текущего между концами проводника благодаря разности потенциалов, А.
Влияние размера (площади поперечного сечения и длины) проводника и материала, из которого он изготовлен, на сопротивление электрической цепи.
В металле роль подвижных переносчиков электрического заряда играют свободные электроны. Они ведут себя таким образом, что их можно считать эквивалентными молекулам в газе, хаотично двигающимся. Обычно в физике свободно движущиеся электроны принимают за электронный газ, это означает, что при первом приближении они подчиняются тем же законам, с помощью которых описывают молекулы в идеальном газе.
Вид металла, который был использован при изготовлении проводника, влияет на плотность электронного газа и строение его кристаллической решетки. Отсюда следует, что и сопротивление проводника зависит от материала, из которого он изготовлен. Также оно зависит от длины проводника, площади его поперечного сечения и температуры.
От величины сечения проводника напрямую зависит сопротивление. Так происходит потому, что поток электронов одинаковой силы при прохождении через меньшее сечение приобретает большую плотность, при этом электроны начинают взаимодействовать с частицами вещества, из которого изготовлен проводник, более активно.
Существует также величина, σ, обратная удельному сопротивлению. Она называется удельной проводимостью.
Сопротивление тела человека.
Грань между безопасным и опасным для здоровья человека воздействием электрического тока зафиксирована на значении 1кОм при частоте напряжения тока 50 Гц. Но данную величину никак нельзя назвать сопротивлением человеческого тела. Сопротивление тела человека зависит от множества факторов и является нелинейным по отношению к приложенному напряжению, а также не омическим. Здесь важны изменения во времени, также нужно учитывать тот факт, что человек при волнении потеет и его сопротивление понижается. Существуют и другие причины, из-за которых однозначно определить сопротивление тела человека не так просто, как сопротивление электрической цепи.
Заметные повреждения человек получает при прохождении через его тело тока силой от 100 мА и выше. Ток силы 1 мА принят как абсолютно безопасный. Также удельное сопротивление тела человека подвержено влиянию со стороны состояния его кожи. Если она сухая, то ее сопротивление равно примерно 10000 Ом•м и чтобы достигнуть повреждений, необходимо подать ток с большим напряжением. Если же кожа сырая, то сопротивление сильно понижается и ток напряжением выше 12 В становится опасным. Удельное сопротивление крови равно 1 Ом•м при 50 Гц.
Закон Ома и его применение
Несмотря на свою простоту, закон Ома является фундаментальным. Он позволяет рассчитывать параметры электрической цепи, обеспечивающих её работоспособность. Хотя этот закон и был выведен в начале 19 века, он активно применяется и сейчас. При его использовании важно понимать, какие физические процессы он отражает, как правильно их применять.
Первоначальная и современная формулировка
Этот, на первый взгляд, простой закон был сформулирован немецким физиком Георгом Омом в 1826 году. Соответствующую научную статью он опубликовал в следующем году.
Интересно отметить, что появление этой работы не вызвало ажиотажа. Научная общественность оценила открытие Ома лишь после публикации работ физика Пулье аналогичного содержания в 1830 году. В 1833 Ом получил степень доктора в Нюрнбергском университете. В 1872 году единица измерения сопротивления стала называться Омом. В самой простой форме закон для участка цепи звучит так:
Закон носит эмпирический характер, так как он выражает обобщенный анализ большого количества опытных данных.
Сейчас формула закона Ома для полной электрической цепи имеет следующий вид:
Закон Ома для полной цепи учитывает полное сопротивление, которое представляет собой сумму сопротивления цепи R и внутреннего сопротивления источника тока r.
Георг Ом первоначально сформулировал его по-другому. Закон Ома для замкнутой цепи выглядел так:
Как видно, закон Ома, применяемый для полной электрической цепи, в обоих вариантах имеет одинаковую формулировку.
Также применяется закон Ома в дифференциальной форме. В данном случае рассматриваются очень малые величины. Но это позволяет применять интегральное и дифференциальное исчисление для сложных случаев.
Практическое применение
В большинстве случаев внутреннее сопротивление источника тока считают относительно малым по сравнению с тем, которое есть в электрической цепи. В этом случае применяется закон Ома для замкнутой цепи в сокращенной формулировке: I = U / R.
Чтобы лучше понять, какие физические процессы происходят в электрической цепи, нужно учитывать следующее:
В электрической цепи используются резисторы в тех случаях, когда для работы прибора требуется строго определённое сопротивление. Если клеммы источника тока, говоря простыми словами, соединить напрямую, то сопротивление будет малым, а ток относительно большим. С одной стороны, большой ток в некоторых случаях способен расплавить провод, с другой он приводит к ускоренной разрядке батареи.
В веществе движение электронов не является свободным. Перемещаясь, частицы должны преодолевать сопротивление, расходуя на это свою энергию. Величина сопротивления зависит от конкретного материала. В проводниках электроны двигаются относительно легко. Через изоляторы ток пройти не может, за исключением тех случаев, когда подаётся настолько высокое напряжение, что такая ситуация создает пробой.
В полупроводниках происходят более сложные процессы, поскольку они отличаются жесткой кристаллической структурой. При наличии примесей определённого типа может возникать электронная или дырочная проводимость. Ток может представлять собой движение, как электронов, так и дырок.
Более точную характеристику сопротивления можно получить из следующей формулы:
С помощью удельного сопротивления можно охарактеризовать электрические свойства определённого вещества. Эта величина представляет собой сопротивление, которое имеет отрезок провода из данного материала длиной 1 м и площадью сечения 1 кв. мм.
Сопротивление источника тока
Закон Ома для полной электрической цепи и формулы для расчета ее параметров характеризируют не только ток, проходящий через цепь, но и тот, который существует внутри источника тока. Закон Ома для участка цепи не учитывает наличие этой величины.
Батарея аккумулятора обеспечивает перемещение электронов от положительной клеммы к отрицательной. Через электрическую цепь они постоянно движутся в противоположном направлении. Уменьшение их количества на отрицательной клемме и избыток на положительной постоянно компенсируются процессами, происходящими внутри устройства.
Такое движение электронов также является электрическим током. При этом частицам приходится преодолевать внутреннее сопротивление источника тока. При увеличении температуры сопротивление может меняться, характер изменения зависит от конкретного материала.
Эмпирический характер закона Ома
При изучении природы электричества путем научных исследований происходит формулировка тех или иных законов. Они отличаются межу собой не только своим содержанием, но и тем, как были выведены. Некоторые законы представляют собой следствие из более общих утверждений, другие являются удачной попыткой объяснить многократно наблюдаемые факты.
Закон Ома для однородного участка фактически является попыткой создать правило, которое соответствует большому количеству наблюдений и экспериментов. Его формулировка на протяжении веков подтверждалась на практике, приобретая силу фундаментального закона физики. Закон Ома, представленный в интегральной форме, даёт возможность производить расчёты для различных электрических цепей.
Использование для переменного тока
Как известно, в цепи переменного тока действует как активное, так и реактивное сопротивление. Первое из них совпадает с тем, как понимали эту величину во времена Георга Ома. Однако индуктивное и емкостное сопротивления также тормозят движение электронов. В этом случае применяется закон Ома для переменного тока.
Чтобы использовать данный закон в таких цепях, вместо омического сопротивления следует рассматривать полное, которое учитывает суммарное воздействие активной и реактивной составляющих сопротивления.
В представленной схеме полное сопротивление обозначается как Z. Омическое, индуктивное и емкостное — соответственно R, XL и XC. Закон Ома для цепи переменного тока учитывает все эти разновидности. Формула расчёта подразумевает, что сложение сопротивлений происходит по правилу векторов.
Для определения всех сопротивлений используют прямоугольный треугольник, один катет которого выражает активное сопротивление, а второй – реактивное. Последнее равно разнице индуктивного и емкостного сопротивлений. Определение полного осуществляется по теореме Пифагора, согласно которой длина гипотенузы равна корню квадратному от суммы квадратов катетов.
Применение на практике
Когда нужно работать с электрической цепью, важно знать напряжение, силу тока, сопротивление во всей цепи или на отдельных участках. Если известны две из этих величин, то с помощью закона Георга Ома можно узнать третью без проведения непосредственных измерений.
Иногда требуется использовать закон Ома для неоднородного участка цепи. В этом случае его разбивают на отдельные зоны и сначала проводят вычисления для них.
Поскольку от электрических параметров зависят тепловые или химические воздействия, применяя закон Ома можно рассчитать возможный эффект. В частности, знание таких особенностей позволяет избежать разрушительного эффекта слишком высокой силы тока.
Закон Ома может быть выражен в интегральной и дифференциальной формах. В первом случае речь идёт о традиционной формулировке, а его выражение в дифференциальной форме учитывает удельную проводимость – величину, обратную удельному сопротивлению.
В заключение следует сказать, что измерение сопротивления осуществляется с помощью специального прибора — омметра. Но в работающей цепи это сделать невозможно. Определить величину сопротивления без отключения цепи можно расчетным путем используя закон Ома и предварительно измерив напряжение и силу тока на нужном участке цепи.
Видео по теме
Что такое электрическое сопротивление?
Электрическое сопротивление характеризует свойство проводника оказывать противодействие направленному движению заряженных частиц.
Влияние электрического сопротивления на электрический ток можно представить следующим образом:
Электрическое сопротивление говорит о том, какое напряжение U необходимо, чтобы заставить электрический ток определенной силы тока I протекать через проводник. В физике для обозначения электрического сопротивления в формуле используется прописная буква R (от английского слова «Resistor» или «Resistance»).
Аналогия с потоком воды
Когда речь идет об электрическом сопротивлении в физике, необходимо различать два случая:
Примечание. Резистор — это прибор с постоянным сопротивлением. Если необходимо регулировать силу тока в электрической цепи, то используют для этой цели реостаты — приборы с переменным сопротивлением. В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь. Реостат используется, например, в регуляторах громкости радиоприёмников.
Вы можете проиллюстрировать работу резистора как элемента (т.е. случай 1) с помощью модели протекания воды в трубе.
Если представить поток электрического тока как поток воды через трубу, то резистор, имеющий электрическое сопротивление R, выполняет функцию сужения трубы. Сужение в трубе препятствует потоку воды, подобно тому, как резистор препятствует потоку электрического тока. Если вы сильнее сузите трубу, то сопротивление потоку воды увеличится. Тем самым труба будет больше препятствовать потоку воды.
Формулы для определения электрического сопротивления
Согласно закона Ома для участка электрической цепи следует, что если вы измеряете напряжение U на проводнике и через него течет ток силой I, то проводник имеет электрическое сопротивление R, равное U, деленное на I, т.е. R = U / I. Единицей измерения электрического сопротивления в СИ является Ом, которая названа в честь немецкого физика Георга Симона Ома. То есть, 1 Ом — это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А. Поэтому, иногда, электрическое сопротивление ещё могут называть «омическим сопротивлением».
Рис. 2. Определение электрического сопротивления
Для очень малых или очень больших сопротивлений используются такие дополнения, как милли-, кило- или мегаом. Применяются следующие отношения:
Интересный факт! Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.
Также вы можете рассчитать электрическое сопротивление проводников с помощью их геометрических характеристик. Формула для этого следующая (см. также рисунок 3):
Другими словами, чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Весомое значение имеет также материал, из которого изготовлен проводник.
Как измерять электрического сопротивление?
Для измерения электрического сопротивления необходимо придерживаться следующих правил:
Значение омического сопротивления лучше всего определять с помощью цифрового мультиметра, чтобы избежать ошибок и неточностей в показаниях.
При измерении с помощью измерительного прибора измеряемый элемент не должен быть подключен к источнику напряжения во время измерения. Измеряемый элемент должен быть отпаян от электрической цепи, по крайней мере, с одной стороны. В противном случае расположенные параллельно элементы будут влиять на результат измерения.
Что такое сопротивление
Основное понятие
Еще со времен общеобразовательной школы, а именно такого предмета, как физика, в нашей памяти присутствует информация про удельное сопротивление проводника. Некоторые уже и не вспомнят точного определения, однако на всю жизнь запомнили, что собой представляет данный термин. Рассмотрим более подробно, как звучит определение данного термина – это физическая составляющая, которая характеризует свойства проводящего составляющего, оказывать препятствие при прохождении электроэнергии. Равняется данное значение присутствующему напряжению на концах провода и силе тока, который протекает по данному элементу. В этом конкретном случае мы рассмотрели, от чего зависит сопротивление используемого проводника. Кроме того, на уроках физики предоставлялись специальные формулы, которые позволяли вычислять необходимые значения данной величины, зная лишь отдельные переменные. Если в повседневной жизни большинству это может и не потребоваться, то в ряде исключительных случаев, при проведении самостоятельно ремонтных работ, предоставленная ранее информация может потребоваться. Тем, кто сталкивается с электроэнергией на постоянной основе, требуется знать все сведения о данном значении.
Важно. Ранее мы рассмотрели, что такое сопротивление, однако, чтобы более точно понимать этот термин, следует также рассмотреть дополнительную информацию, а кроме того, порядок вычисления и используемые материалы.
От чего зависит
Электрическое сопротивление используемых проводников – это не постоянная величина, она зависит от ряда отдельных моментов. Рассмотрим более подробно зависимость данного значения:
Важно. В качестве проводящих материалов на практике практически всегда используются металлы, так как эти элементы обладают наименьшим размером, что позволяет свободно перемещать по ним электроэнергию.
Сопротивление проводника/цепи.
Термин “сопротивление” уже говорит сам за себя
Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.
Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:
Сопротивление проводника зависит от нескольких факторов:
Удельное сопротивление – это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:
R = rhomedspace frac
Для нашего случая rho будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:
R =0,0175 cdot frac<0.5> <0.2>= 0.04375medspace Ом
Как вы уже поняли из примера, единицей измерения сопротивления является Ом
С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.
Закон Ома.
И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:
Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.
Рассмотрим простейшую электрическую цепь:Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:
Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:
I = frac<10> <200>= 0.05 = 50medspaceмА
Как образуется сопротивление проводников
Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.
Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров – температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение – сопротивление проводников отличается. У меди меньше алюминия.
Электрическое сопротивление тока.
Электрическое сопротивление – физическая величина, которая характеризует способность проводника влиять на электрический ток, протекающий в проводнике.
Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.
За счет чего же появляется сопротивление тока? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами – узлами кристаллической решетки), благодаря чему и создается сопротивление тока.
С электрическим сопротивлением также связана другая физическая величина – проводимость тока, обратная величина относительно сопротивления.
В чем измеряется
Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.
Формула как найти
Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину. Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз.
Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.
Закон ома в дифференциальной форме
Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.
Вам это будет интересно Как измерять напряжение
Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты. Они показаны ниже в схеме.
Связь с проводимостью, выраженная в физических соотношениях.
Формулы сопротивления тока.
Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока, эти величины пропорциональны: I
Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I
В результате исследований была выявлена следующая закономерность: R=U/I
Расписываем получение единицы сопротивления тока: 1Ом=1В/1А
Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.
Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).
Сопротивление тока, сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.
От чего зависит
Сопротивляемость зависит от температуры. Она увеличивается, когда повышается столбик термометра. Это поясняется физиками так, что при росте температуры атомные колебания в кристаллической проводниковой решетке повышаются. Это препятствует тому, чтобы свободные электроны двигались.
Обратите внимание! Что касается полупроводников и диэлектриков, то там величина понижается из-за того, что увеличивается структура концентрации зарядных носителей.
Зависимость от температуры как основное свойство проводниковой сопротивляемости
Удельное сопротивление разных материалов
Важно отметить, что сопротивление у металлических монокристаллов с металлами и сплавами разные. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства. Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.
Интересно, что под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в проном, антикоррозийном и легком составе, как правило, равна не больше 0,1%.
Обратите внимание! Что касается отжига алюминия, свинца или железа, значение в таких же условиях вырастает в 2 раза, несмотря на наличие примесей в количестве 0,5% и необходимости большей энергии на плавление.
Таблица значений составов при температуре 20 градусов Цельсия
В целом, удельное электросопротивление представляет собой физическую величину, которая характеризует способность вещества препятствовать тому, чтобы проходил электроток. По СИ измеряется в омах, перемноженных на метры. Зависит от увеличения температуры вещества. Отыскать значение можно по формуле соотношения общего сопротивления и площади поперечного сечения, поделенного на длину проводника. Что касается удельного сопротивления сплавов, согласно изучениям разных ученых состав их непостоянный, может быть изменен под термообработкой.