Что такое союзная матрица как найти
Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы.
Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.
Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части.
Метод присоединённой (союзной) матрицы
Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (пример №2), третьего (пример №3), четвертого (пример №4). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части.
Итак, обратная матрица найдена:
$$A^<-1>=\left( \begin
Составляем матрицу из алгебраических дополнений и транспонируем её:
Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.
Например, для первой строки получим:
А далее продолжаем находить алгебраические дополнения:
Матрица из алгебраических дополнений:
Проверка, при желании, может быть произведена так же, как и в предыдущих примерах.
Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Нахождение обратной матрицы: три алгоритма и примеры
Что значит найти обратную матрицу?
При решении примеров мы разберём эти действия подробнее. А пока узнаем, что гласит теория об обратной матрице.
Обратной матрицей, которую требуется отыскать для данной квадратной матрицы А, называется такая матрица
,
произведение на которую матрицы А справа является единичной матрицей, т.е, . (1)
Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.
Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.
Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.
Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.
Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.
На сайте есть онлайн калькулятор для нахождения обратной матрицы. Вы можете открыть его в новом окне уже сейчас, если держите перед собой ваши собственные задания. А мы разберём несколько разминочных.
Нахождение обратной матрицы методом алгебраических дополнений (союзной матрицы)
Для неособенной квадратной матрицы А обратной является матрица
, (2)
где — определитель матрицы А, а
— матрица, союзная с матрицей А.
Пусть существует квадратная матрица A:
Остановимся на минорах и алгебраических дополнениях.
Пусть есть квадратная матрица третьего порядка:
.
Вычислим алгебраическое дополнение элемента , то есть элемента 2, стоящего на пересечении первой строки и второго столбца.
Для этого нужно сначала найти минор этого элемента. Он получается вычёркиванием из определителя строки и столбца, на пересечении которых стоит указанный элемент. В результате останется следующий определитель, который и является минором элемента :
.
.
По этой инструкции нужно вычислить алгебраические дополнения всех элементов матрицы A’, транспонированной относительно матрицы матрица A.
И последнее из значимых для нахождение обратной матрицы понятий. Союзной с квадратной матрицей A называется матрица того же порядка, элементами которой являются алгебраические дополнения соответствующих элементов определителя матрицы
, транспонированной относительно матрицы A. Таким образом, союзная матрица состоит из следующих элементов:
Алгоритм нахождения обратной матрицы методом алгебраических дополнений
1. Найти определитель данной матрицы A. Если определитель равен нулю, нахождение обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.
2. Найти матрицу, транспонированную относительно A.
3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.
4. Применить формулу (2): умножить число, обратное определителю матрицы A, на союзную матрицу, найденную на шаге 4.
5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была найдена верно. В противном случае начать процесс решения снова.
Пример 1. Для матрицы
найти обратную матрицу.
Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.
Найдём матрицу, союзную с данной матрицей А.
Найдём матрицу , транспонированную относительно матрицы A:
Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы, транспонированной относительно матрицы A:
Следовательно, матрица , союзная с матрицей A, имеет вид
Замечание. Порядок вычисления элементов и транспонирования матрицы может быть иным. Можно сначала вычислить алгебраические дополнения матрицы A, а затем транспонировать матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.
Применяя формулу (2), находим матрицу, обратную матрице А:
Нахождение обратной матрицы методом исключения неизвестных Гаусса
,
и
.
Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса
1. К матрице A приписать единичную матрицу того же порядка.
2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.
2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.
Пример 2. Для матрицы
найти обратную матрицу.
Решение. Составляем сдвоенную матрицу
и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.
Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим
.
Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим
.
Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим
.
Разделим третью строку на 8, тогда
.
Умножим третью строку на 2 и сложим её со второй строкой. Получается:
.
Переставим местами вторую и третью строку, тогда окончательно получим:
.
Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:
.
Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:
.
В результате должна получиться обратная матрица.
Пример 3. Для матрицы
найти обратную матрицу.
Решение. Составляем сдвоенную матрицу
и будем её преобразовывать.
Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим
.
Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим
.
Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.
Нахождение обратной матрицы методом линейных преобразований
Матрицы теснейшим образом связаны с системами линейных уравнений. Каждой матрице соответствует система линейных уравнений, коэффициенты в которой есть элементы матрицы. И наоборот, системе линейных уравнений соответствует некоторая матрица.
Алгоритм нахождения обратной матрицы методом линейных преобразований
,
,
3. Находим коэффициенты при y: , которые и будут элементами матрицы, обратной для матрицы A.
4. Пользуясь элементами, найденными на шаге 3, записать найденную обратную матрицу.
Пример 4. Найти обратную матрицу для матрицы
.
Сначала проверим, не равен ли нулю определитель данной матрицы. Он не равен нулю, следовательно, обратная матрица существует.
Для данной матрицы записываем линейное преобразование:
.
Находим линейное преобразование, обратное предыдущему, для этого потребуется находить алгебраические дополнения (урок откроется в новом окне). Запишем обратное линейное преобразование:
Найти обратную матрицу самостоятельно, а затем посмотреть решение
Пример 5. Найти обратную матрицу для матрицы
.
Обратная матрица и ее вычисление с помощью союзной матрицы
Определение 12.1.Пусть A— квадратная неособенная матрица.
Матрица называется обратной матрице A, если ее произведение на матрицу A и справа и слева равно единичной матрице E.
Обратную матрицу будем обозначать .
Таким образом — обратная для A, если
.
Составим вспомогательную матрицу H, состоящую из алгебраических дополнений элементов матрицы A:
.
Транспонируем матрицу H и получим матрицу C вида
.
Матрица C называется союзной матрицей.
Покажем, что .
По определению .
(по теореме разложения и теореме аннулирования)
= .
Получено противоречие, а значит матрица — единственна. Таким образом, доказана теорема 12.1.
Пример 12.1.Найти обратную матрицу для
.
Найдем определитель матрицы A:
Найдем алгебраические дополнения элементов матрицы A:
Составим союзную матрицу C:
,
тогда .
13.Cистемы линейных уравнений.
Рассмотрим систему m линейных уравнений с n неизвестными
(13.1)
Здесь — коэффициенты системы при неизвестных
— свободные члены или правые части системы.
Матрица , состоящая из коэффициентов системы, носит название матрицы системы. Если к матрице добавим столбец свободных членов, то получим расширенную матрицу
Решением системы называется такая совокупность значений , при подстановке которой в систему (13.1) все уравнения системы обращаются в тождество.
Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если решения системы не существует. Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если решений несколько.
Две системы с одним и тем же набором неизвестных называются равносильными в двух случаях: 1) каждое решение первой системы является решением второй, и наоборот; 2) обе системы несовместны. Равносильные системы должны иметь одинаковый набор неизвестных, но число уравнений может не совпадать.
14.Матричная запись системы уравнений.
Обозначим через Xматрицу-столбец неизвестных
.
AX=B(14.1)
— матричная запись системы линейных уравнений (13.1). Если m = n, т.е. число уравнений равно числу неизвестных, то матрица А – квадратная. Для систем с квадратной неособенной матрицей можно искать решение в матричном виде. Умножим обе части матричного равенства (14.1) на слева:
,
и так как и
, то получим решение системы в виде
Пример 14.1:Используя найденную в примере 12.1 обратную матрицу, решить систему уравнений
Так как , а столбец свободных членов
, то
Ответ: