Что такое спин в квантовой физике

Что такое спин в физике: момент импульса, бозоны, фермионы

Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

Больше полезной информации для учащихся – у нас в телеграм.

Спин и момент импульса

Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

Теперь вспомним, что такое момент импульса в классической механике.

Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

Спин же является собственным моментом импульса, то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы.

Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

Спиновое квантовое число

Для характеристики спина в квантовой физике введено спиновое квантовое число.

Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

Бозоны и фермионы

Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

Фермионы: электрон, лептон, кварк

Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе, специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что «в полной мере квантовую физику не понимает никто», обратиться за помощью к опытным специалистам – вполне естественно!

Источник

Что такое спин в квантовой физике

Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Содержание

Свойства спина

Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин — это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики. Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физикеалгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физикеОднако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

Примеры

Ниже указаны спины некоторых микрочастиц.

На июль 2004 года, максимальным спином среди известных элементарных частиц обладает барионный резонанс Δ(2950) со спином 15/2. Спин ядер может превышать 20 Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

История

В 1921 году опыт Штерна — Герлаха подтвердил наличие у атомов спина и факт пространственного квантования направления их магнитных моментов.

В 1924 году, ещё до точной формулировки квантовой механики, Вольфганг Паули вводит новую, двухкомпонентную внутреннюю степень свободы для описания валентного электрона в щелочных металлах. В 1927 году он же модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном (то есть не связанном прямо с обычным) двумерном спиновом пространстве.

В 1928 году Поль Дирак строит релятивистскую теорию спина и вводит уже четырёхкомпонентную величину — биспинор.

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина.

Спин и магнитный момент

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент, а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем. Отношение величины магнитного момента к величине спина называется гиромагнитным отношением, и, в отличие от орбитального углового момента, оно не равно магнетону (Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике):

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

Спин и статистика

Вследствие того, что все элементарные частицы одного и того же сорта тождественны, волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе — Эйнштейна и называются бозонами. Во втором случае частицы описываются статистикой Ферми — Дирака и называются фермионами.

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином ( s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином ( s = 1/2, 3/2, …) — фермионами.

Обобщение спина

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.

Спин классических систем

Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физике

В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости Что такое спин в квантовой физике. Смотреть фото Что такое спин в квантовой физике. Смотреть картинку Что такое спин в квантовой физике. Картинка про Что такое спин в квантовой физике. Фото Что такое спин в квантовой физикеВ системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также

Примечания

Литература

Статьи

Полезное

Смотреть что такое «Спин» в других словарях:

СПИН — собственный момент импульса элементарной частицы или системы, образованной из этих частиц, напр. атомного ядра. Спин частицы не связан с её движением в пространстве и не может быть объяснён с позиций классической физики он обусловлен квантовой… … Большая политехническая энциклопедия

спин — а; м. [англ. spin вращение] Физ. Собственный момент количества движения элементарной частицы, атомного ядра, присущий им и определяющий их квантовые свойства. * * * спин (англ. spin, буквально вращение), собственный момент количества движения… … Энциклопедический словарь

Спин — Спин. Спиновый момент, присущий, например, протону, можно наглядно представить, связав его с вращательным движением частицы. СПИН (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую… … Иллюстрированный энциклопедический словарь

СПИН — (обозначение s), в КВАНТОВОЙ МЕХАНИКЕ собственный угловой момент, присущий некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ, атомам и ядрам. Спин может рассматриваться как вращение частицы вокруг своей оси. Спин является одним из квантовых чисел, посредством… … Научно-технический энциклопедический словарь

СПИН — (английское spin, буквально вращение), собственный момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого. Измеряется в единицах постоянной Планка h и может быть целым (0, 1, 2. ) или… … Современная энциклопедия

СПИН — (от англ. spin вращаться, вертеться), собственный момент кол ва движения элем. ч ц, имеющий квант. природу и не связанный с перемещением ч цы как целого. С. называют также собств. момент кол ва движения ат. ядра (и иногда атома); в этом случае С … Физическая энциклопедия

Спинёв — Спинёв, Николай Николаевич Спортивные награды Академическая гребля Олимпийские игры Золото Афины 2004 четвёрка Николай Николаевич Спинёв (род. 30 мая 1974, Ростов на Дону) российский спортсмен, олимпийский чемпион … Википедия

спин — (англ. spin вращаться) собственный механический момент количества движения элементарной частиц (электрона, протона, нейтрона) или атомного ядра, всегда присущий данному виду частиц, определяющий их свойства и обусловленный их квантовой природой;… … Словарь иностранных слов русского языка

спин — момент, вращение Словарь русских синонимов. спин сущ., кол во синонимов: 2 • вращение (15) • момент … Словарь синонимов

спин — спин, а (физ.) … Русский орфографический словарь

Источник

Что такое спин элементарных частиц

Иногда даже в очень серьезных книгах по физике можно встретить ошибочное утверждение о том, что спин никак не связан с вращением, что, якобы, элементарная частица не вращается. Иногда встречается даже такое утверждение, что спин, это, якобы, такая особая квантовая характеристика элементарных частиц, типа заряда, которая не встречается в классической механике.

Такое заблуждение возникло вследствие того, что, при попытке представить элементарную частицу в виде вращающегося твердого шарика однородной плотности, получаются нелепые результаты относительно скорости такого вращения и магнитного момента, связанным с таким вращением. Но, на самом деле, эта нелепость говорит лишь о том, что элементарную частицу нельзя представить в виде твердого шарика однородной плотности, а не о том, что спин будто бы никак не связан с вращением.

На самом деле, очень сильно сбивает с толку то, что в классической физике мы не наблюдаем аналога спина. Если бы мы могли бы обнаружить аналог спина в классической механике, то его квантовые свойства не казались бы нам слишком экзотическими. Поэтому для начала попробуем поискать аналог спина в классической механике.

Аналог спина в классической механике

Как известно, при доказательстве теоремы Эммы Нётер в той её части, которая посвящена изотропности пространства, мы получаем два слагаемых связанных с моментом вращения. Одно из этих слагаемых интерпретируется в качестве обычного вращения, а другое в качестве спина. Но теоремы Э.Нётер безотносительна того, с какой физикой мы имеем дело, с классической или с квантовой. Теорема Нётер имеет отношение к глобальным свойствам пространства и времени. Это универсальная теорема.

А раз так, то значит и спиновый вращательный момент существует в классической механике, хотя бы теоретически. Действительно, можно чисто теоретически построить модель спина в классической механике. Реализуется ли эта модель спина на практике в какой-нибудь макросистеме, это уже другой вопрос.

Давайте посмотрим на обычное классическое вращение. Сразу бросается в глаза то, что бывают вращения связанные с переносом центра массы и без переноса центра массы. Например, когда Земля вращается вокруг Солнца, то происходит перенос массы Земли, так как ось этого вращения не проходит через центр массы Земли. В то время, как при вращении Земли вокруг своей оси, центр массы Земли никуда не перемещается.

Тем не менее, при вращении Земли вокруг своей оси масса Земли всё равно двигается. Но очень интересно. Если выделить какой-нибудь объем пространства внутри Земли, то масса внутри этого объема не меняется с течением времени. Потому что, сколько массы уходит из этого объема в единицу времени с одной стороны, столько же и приходит массы с другой стороны. Получается, что в случае вращения Земли вокруг своей оси мы имеем дело с потоком массы.

Другой пример потока массы в классической механике, это круговой поток воды (воронка в ванной, перемешивание сахара в стакане с чаем) и круговые потоки воздуха (смерч, тайфун, циклон и т.п.). Сколько воздуха или воды уходит из выделенного объема в единицу времени, столько же туда и приходит. Поэтому масса этого выделенного объема не меняется во времени.

А теперь давайте сообразим, как должно выглядеть вращательное движение, в котором нет даже потока массы, но присутствует момент вращения. Представим себе неподвижный стакан воды. Пусть каждая молекула воды в этом стакане вращается по часовой стрелке вокруг вертикальной оси, которая проходит через центр массы молекулы. Вот такое упорядоченное вращение всех молекул воды.

Понятно, что у каждой молекулы воды в стакане будет ненулевой момент вращения. При этом моменты вращения всех молекул направлены в одну и ту же сторону. Значит, эти моменты вращения суммируются друг с другом. И эта сумма как раз и будет макроскопическим моментом вращения воды в стакане. (В реальной ситуации все моменты вращения молекул воды направлены в разные стороны и их суммирование дает нулевой общий момент вращения всей воды в стакане.)

Таким образом, мы получаем, что центр массы воды в стакане не вращается вокруг чего-то, и нет кругового потока воды в стакане. А момент вращения имеется. Это и есть аналог спина в классической механике.

Правда, это пока еще не совсем «честный» спин. У нас есть локальные потоки массы, связанные с вращением каждой отдельно взятой молекулы воды. Но это преодолевается предельным переходом, при котором число молекул воды в стакане устремляем к бесконечности, а массу каждой молекулы воды устремляем к нулю так, чтобы плотность воды оставалась постоянной при таком предельном переходе. Понятно, что при таком предельном переходе угловая скорость вращения молекул остается постоянной, и общий момент вращения воды тоже остается постоянным. В пределе получаем, что этот момент вращения воды в стакане имеет чисто спиновую природу.

Квантование момента вращения

В квантовой механике характеристики тела, которые могут передаваться от одного тела к другому, могут квантоваться. Основное положение квантовой механики утверждает, что эти характеристики могут передаваться от одного тела к другому не в любых количествах, а только кратно некоторому минимальному количеству. Это минимальное количество называется квантом. Квант в переводе с латыни как раз и означает количество, порция.

Поэтому и наука, которая изучает все следствия такой передачи характеристик, называется квантовой физикой. (Не путать с квантовой механикой! Квантовая механика, это математическая модель квантовой физики.)

Создатель квантовой физики Макс Планк полагал, что только такая характеристика, как энергия, передается от тела к телу пропорционально целому числу квантов. Это помогло Планку объяснить одну из загадок физики конца 19-го века, а именно, почему все тела не отдают всю свою энергию полям. Дело в том, что у полей бесконечное число степеней свободы, а у тел конечное число степеней свободы. В соответствии с законом о равнораспределении энергии по всем степеням свободы, все тела должны были бы мгновенно отдать всю свою энергию полям, чего мы не наблюдаем.

Впоследствии Нильс Бор разгадал вторую величайшую загадку физики конца 19-го века, а именно, почему все атомы одинаковы. Например, почему не бывает больших атомов водорода и маленьких атомов водорода, почему радиусы всех атомов водорода одинаковы. Оказалось, что эта проблема решается, если считать, что не только энергия квантуется, но и момент вращения тоже квантуется. И, соответственно, вращение может передаваться от одного тела к другому не в любых количествах, а только пропорционально минимальному кванту вращения.

Квантование момента вращения сильно отличается от квантования энергии. Энергия, это скалярная величина. Поэтому квант энергии всегда положителен и у тела может быть только положительная энергия, то есть положительное число квантов энергии. Кванты вращения вокруг определенной оси бывают двух видов. Квант вращения по часовой стрелке и квант вращения против часовой стрелки. Соответственно, если Вы выбираете другую ось вращения, то там также есть два кванта вращения, по часовой стрелке и против часовой стрелки.

Аналогичная ситуация и при квантовании импульса. Вдоль определенной оси телу можно передать положительный квант импульса или отрицательный квант импульса. При квантовании заряда тоже получается два кванта, положительный и отрицательный, но это скалярные величины, они не имеют направления.

Спин элементарных частиц

В квантовой механике принято собственные моменты вращения элементарных частиц называть спином. Момент вращения элементарных частиц очень удобно измерять в минимальных квантах вращения. Так и говорят, что, например, спин фотона вдоль оси такой-то равен (+1). Это означает, что у этого фотона момент вращения равен одному кванту вращения по часовой стрелке относительно выбранной оси. Или говорят, что спин электрона вдоль оси такой-то равен (-1/2). Это означает, что у этого электрона момент вращения равен половине кванта вращения против часовой стрелки относительно выбранной оси.

Иногда некоторых людей смущает, почему у фермионов (электроны, протоны, нейтроны и т.п.) половинные кванты вращения в отличие от бозонов (фотоны и т.п.). На самом деле квантовая механика ничего не говорит о том, какое количество вращения может иметь тело. Она говорит только о том, в каком количестве это вращение может ПЕРЕДАВАТЬСЯ от одного тела к другому.

Ситуация с половинами квантов встречается не только при квантовании вращения. Например, если решать уравнение Шредингера для линейного осциллятора, то получается, что энергия линейного осциллятора всегда равна полуцелому значению квантов энергии. Поэтому, если у линейного осциллятора забирать кванты энергии, то в конце концов у осциллятора останется только половина кванта энергии. И вот эту половину кванта энергии забрать у осциллятора уже никак не получится, так как забрать можно только весь квант энергии целиком, а не его половину. У линейного осциллятора остаются эти полкванта энергии в качестве нулевых колебаний. (Эти нулевые колебания бывают не такими уж и маленькими. В жидком гелии их энергия больше, чем энергия кристаллизации гелия, в связи с чем, гелий не может образовать кристаллическую решетку даже при нуле абсолютной температуры.)

Передача вращения элементарных частиц

Посмотрим, как передаются собственные моменты вращения элементарных частиц. Например, пусть электрон, вращается по часовой стрелке вокруг некоторой оси (спин равен +1/2). И пусть он отдает, например, фотону при электрон-фотонных взаимодействиях, один квант вращения по часовой стрелке вокруг этой же оси. Тогда спин электрона становится равным (+1/2)-(+1)=(-1/2), то есть электрон просто начинает вращаться вокруг этой же оси, но в обратную сторону против часовой стрелки. Таким образом, хотя у электрона была половина кванта вращения по часовой стрелке, но тем не менее у него можно забрать целый квант вращения по часовой стрелке.

Если у фотона до взаимодействия с электроном был спин на ту же самую ось равен (-1), то есть равен одному кванту вращения против часовой стрелки, то после взаимодействия спин стал равен (-1)+(+1)=0. Если спин на эту оссь изначально был равен нулю, то есть фотон не вращался вокруг этой оси, то после взаимодействия с электроном фотон, получив один квант вращения по часовой стрелке, начнет вращаться по часовой стрелке с величиной одного кванта вращения: 0+(+1)=(+1).

Итак, получается, что фермионы и бозоны отличаются друг от друга еще и тем, что собственное вращение бозонов можно остановить, а собственное вращение фермионов оснановить нельзя. Фермион всегда будет иметь ненулевой момент вращения.

У такого бозона, как, например, фотон, могут быть два состояния: полное отсутствие вращения (спин относительно любой оси равен 0) и состояние вращения. В состоянии вращения фотона, величина его спина на какую-нибудь ось может принимать три значения: (-1) или 0 или (+1). Значение ноль в состоянии вращения фотона говорит о том, что фотон вращается перпендикулярно выбранной оси и поэтому отсутствует проекция вектора момента вращения на выбранную ось. Если ось выбрать по другому, то там будет спин или (+1) или (-1). Нужно различать эти две ситуации у фотона, когда вращения совсем нет, и когда вращение есть, но оно идет не вокруг выделенной оси.

Кстати, спин фотона имеет очень простой аналог в классической электродинамике. Это вращение плоскости поляризации электромагнитной волны.

Ограничение максимального спина элементарных частиц

Очень загадочным является то, что мы не можем наращивать момент вращения элементарных частиц. Например, если электрон имеет спин (+1/2), то мы не можем дать этому электрону еще один квант вращения по часовой стрелке: (+1/2)+(+1)=(+3/2). Мы можем только менять вращение электрона по часовой и против часовой стрелки. Мы также не можем сделать спин равный, например, (+2) у фотона.

В то же время более массивные элементарные частицы могут иметь больше значения момента вращения. Например, омега-минус-частица имеет спин равный 3/2. На выделенную ось этот спин может принимать значения: (-3/2), (-1/2), (+1/2) и (+3/2). Так, если омега-минус-частица имеет спин (-1/2), то есть вращается против часовой стрелки вдоль заданной оси с величиной половины кванта вращения, тогда она может поглотить еще один квант вращения против часовой стрелки (-1) и её спин вдоль этой оси станет (-1/2)+(-1)=(-3/2).

Чем больше масса тела тем может быть больше его спин. Это можно понять, если вернуться к нашему классическому аналогу спина.

Когда мы имеем дело с потоком массы, то можем наращивать момент вращения до бесконечности. Например, если мы раскручиваем твердый однородный шарик вокруг оси, проходящий через его центр массы, то по мере того, как линейная скорость вращения на «экваторе» будет приближаться к скорости света, у нас начнет себя проявлять релятивистский эффект увеличения массы шарика. И хотя радиус шарика не меняется и линейная скорость вращения не растет свыше скорости света, тем не менее, момент вращения бесконечно нарастает из-за бесконечного нарастания массы тела.

А в классическом аналоге спина этого эффекта нет, если мы делаем «честный» предельный переход, уменьшая массу каждой молекулы воды в стакане. Можно показать, что в такой модели классического спина существует предельная величина момента вращения воды в стакане, когда дальнейшее поглощение момента вращения уже невозможно.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *