Что такое статический момент сечения
СОПРОМАТ ОН-ЛАЙН
Меню сайта
Программы по сопромату (построение эпюр, различные калькуляторы, шпоры и другое).
Базовый курс лекций по сопромату, теория, практика, задачи.
1. Геометрические характеристики сечений.
1.1. Статический момент сечения.
При дальнейшем изучении вопросов прочности, жесткости и устойчивости нам придется иметь дело с некоторыми геометрическими характеристиками сечения: статическими моментами, моментами инерции, моментами сопротивления.
Статическим моментом Sx сечения (фигуры) относительно какой-либо оси х (рис.1.1) называется геометрическая характеристика, определяемая интегралом вида
(1.1)
Единицей измерения статического момента является единица длины в третьей степени, обычно см 3 (см в третьей степени). Статический момент может быть положительным, отрицательным и, в частности, равным нулю. Если отождествить площадь с силой, действующей перпендикулярно плоскости чертежа, то интеграл (4.1) можно рассматривать как сумму моментов сил относительно оси х. По известной из теоретической механике теореме о моменте равнодействующей можно написать
(1.2)
Из формулы (1.2) следует формула определения ординаты центра тяжести
Аналогично, статический момент относительно оси у равен
(1.4)
Центр тяжести обладает тем свойством, что если тело опереть в этой точке, то оно будет находиться в равновесии.
Из формулы (1.2) и (1.4) следует, что если оси х и у проходят через центр тяжести фигуры, то статический момент относительно этих осей равен нулю. Такие оси называются центральными осями.
Если фигуру можно представить в виде отдельных простых фигур (квадратов, треугольников и т.д.), для которых известны положения центров тяжести, то в этом случае статический момент всей фигуры можно получить как сумму статических моментов этих простых фигурю Это непостредственно следует из свойств определенного интеграла.
Если фигура имеент ось симметрии, то последняя всегда проходит через центр тяжести фигуры, а потому статический момент фигуры относительно оси симметрии всегда равен нулю.
Во многих случаях вместо простых интегралов вида (1.1) и (1.4) удобнее иметь дело с двойными интегралами вида:
(1.1a)
(1.4a)
Пример 1.1. Определить положение центра тяжести сечения, показанного на рис. 1.2, а.
Решение. Разбиваем сечение на два прямоугольника. Проводим вспомогательные оси х и у.
По формулам (1.3) и (1.5) получим:
Пример 1.2. Вычислить ординату центра тяжести половины круга (рис. 1.2, б).
Решение. Пользуемся формулой
Вычисляем числитель, используя уравнение окружности х 2 + y 2 = R 2 :
Полезные ссылки
6.1. Статический момент площади сечения
6.1. СТАТИЧЕСКИЙ МОМЕНТ ПЛОЩАДИ СЕЧЕНИЯ
Статический момент площади – распространенная на всю площадь сумма произведений элементарных площадок dA на расстояние от них до этой оси Это понятие аналогично моменту силы относительно оси. Если предположить, что А – вес пластины, имеющей форму нашего сечения, то статический момент Sz – это момент силы тяжести пластины относительно оси z. Размерность: единицы длины в третьей степени (см3; м3). Знаки: плюс, ноль и минус. Ось центральная – ось, относительно которой статический момент площади равен нулю. Центр тяжести сечения – точка пересечения центральных осей. Если фигура имеет ось симметрии, то эта ось является центральной. Статический момент составного сечения равен сумме статических моментов элементов этого сечения. Это следует из свойства определенного интеграла, который можно вычислять по частям – свойство аддитивности (от англ. add – прибавлять, присоединять, складывать). При известных статических Рис. 6.2. Связь знака статического момента площади с его положением в координатной системе моментах частей сечения можно найти координаты центра тяжести состав- ной фигуры: Пример 6.1. Определить положение центральных осей, параллельных основанию и высоте фигуры. Решение Разбиваем сложную фигуру на две простые, в конкретном примере – на два прямоугольника. Их центры тяжести расположены посредине высоты и посредине ширины. Координаты центров тяжести и площади простых фигур Статические моменты площадей простых фигур Координаты центра тяжести составной фигуры Через найденную точку проводим центральные оси zC и yC, параллельные основанию фигуры и ее высоте. Примечание. Центр тяжести фигуры, составленной из двух частей, лежит на линии, соединяющей центры тяжести простых фигур ее составляющих, причем расстояния до них обратно пропорциональны площадям простых фигур. Если сложная фигура составлена из нескольких простых, то общий центр тяжести находится внутри многоугольника, вершинами которого являются центры тяжести простых фигур.
iSopromat.ru
Формулы для расчета геометрической характеристики статического момента сечений, плоских фигур и площади:
Рассмотрим сечение (плоскую фигуру) произвольной формы площадью A:
Выделим в нем элементарную площадку dA и зададим систему координат:
Координаты площадки обозначим соответственно как x и y:
Статический момент элементарной площадки:
Суммируя выражения по всей площади фигуры, получим соответственно:
Единица измерения статического момента [м 3 ].
тогда статические моменты относительно осей x и y:
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Решение задач, контрольных и РГР
Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.
Если стоимость устроит вы сможете оформить заказ.
Набор студента для учёбы
— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку
СОПРОМАТ ОН-ЛАЙН
Меню сайта
Программы по сопромату (построение эпюр, различные калькуляторы, шпоры и другое).
Базовый курс лекций по сопромату, теория, практика, задачи.
1. Геометрические характеристики сечений
1.1. Статический момент сечения
Статические моменты сечения Sx и Sy используются главным образом для определения положения центра площади сечения и центральных осей.
Рассмотрим изменение статических моментов при параллельном переносе осей (рис. 1.1). Считая известными F, Sx и Sy в системе координат 0XY определим статические моменты Sx1, Sy1 относительно новых осей x1, y1.
Рис. 1.1
Оси x1, y1 можно выбрать таким образом, чтобы выполнились условия:
Оси, относительно которых статические моменты сечения равны нулю, называются центральнми. Точка пересечения центральных осей называется центром тяжести сечения.
Принимая Sx1 = 0 и Sy1 = 0, из выражения (1.1) координаты центра площади сечения относительно вспомогательных осей x, y определяются по формулам (обозначим xc = a, yc = b):
(1.2) |
Соответственно, если площадь F и положение центра площади сечения (координаты xc, yc) в системе координат 0xy известны, то статические моменты сечения относительно осей x, y можно определить из выражений (1.2):
Можно показать, что статический момент относительно любой оси, проходящей через центр площади сечения, равен нулю.
При определении центра площади сложного сечения применяется следующая процедура:
1) сечение разбивается на n частей, площади (Fi) и положение центров (Ci) площади которых известны;
2) задается вспомогательная система координат, в которой определяются координаты центров площадей (xci, yci) этих частей;
3) вычисляются координаты составного сечения по формулам:
(1.4) |
Пример 1. Выполнен с помощью он-лайн программы. (перейдя к примеру нажмите на одно из действий в блоке-меню «Расчет»)
Геометрические характеристики плоских сечений
1.Статические моменты и моменты инерции сечения
Введем декартову прямоугольную систему координат Oxy. Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).
Статическими моментами сечения относительно осей x и y называются интегралы вида:
Точка C с координатами (xC, yC)
Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:
Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:
Полярным моментом инерции сечения относительно начала координат называется интеграл вида:
Центробежным моментом инерции сечения называется интеграл вида:
2.Теорема Штейнера-Гюйгенса о параллельном переносе осей
3.Изменение моментов инерции при повороте осей
Если известны моменты инерции Ix и Iy относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:
Из приведенных формул видно, что
где α0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции :
знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.