Что такое степень многочлена в алгебре 7 класс

Что такое степень многочлена в алгебре 7 класс

Ключевые слова конспекта: Многочлен, стандартный вид многочлена, члены многочлена, полиномы, нуль-многочлен, степень многочлена, приведение подобных слагаемых, старший коэффициент, свободный член многочлена.

Выражение 5a 2 b – 3ab – 4а 3 + 7 представляет собой сумму одночленов 5a 2 b, –5ab, –4а 3 и 7. Такие выражения называют многочленами.

Определение. Многочленом называется сумма одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена. Например, членами многочлена х 3 у 4х 2 + 9 являются одночлены х 3 у, 4х 2 и 9.

Многочлен, состоящий из двух членов, называется двучленом, а многочлен, состоящий из трёх членов, — трёхчленом. Одночлен считают многочленом, состоящим из одного члена. Многочлены иногда называют полиномами, а двучлены — биномами (от греческих слов «поли» — «много», «номос» — «член, часть» и латинского «би» — «два, дважды»).

Зная значения переменных, входящих в многочлен, можно вычислить значение многочлена.

Пример 1. Найдём значение многочлена –0,3х 2 у – х 3 + 7у при х = –0,2, у = –1.
Имеем:
–0,3х 2 у – х 3 +7у = –0,3 • (–0,2) 2 • (–1) – (–0,2) 3 + 7 • (–1) = 0,012 + 0,008 – 7 = –6,98.

Стандартный вид многочлена

В многочлене 13х 2 у + 4 + 8ху – 6х 2 у — 9 первый и четвёртый члены имеют одинаковую буквенную часть. Члены многочлена, имеющие одинаковую буквенную часть, называются подобными членами. Подобными членами считаются и слагаемые, не имеющие буквенной части.

Сумму подобных членов многочлена можно заменить одночленом. Такое тождественное преобразование называют приведением подобных членов или приведением подобных слагаемых. Приведение подобных членов основано на переместительном и сочетательном свойствах сложения и распределительном свойстве умножения.

Пример 2. Приведём подобные члены многочлена 13х 2 у + 4 + 8ху – 6х 2 у — 9.
Имеем:
13х 2 у + 4 + 8ху – 6х 2 у – 9 = (13х 2 у – 6х 2 у) + 8ху + (4 – 9) = (13 – 6)х 2 у + 8ху – 5 = 7х 2 у + 8ху – 5.

В многочлене 7х 2 у + 8ху – 5 каждый член является одночленом стандартного вида, причём среди них нет подобных членов. Такие многочлены называются многочленами стандартного вида.

Рассмотрим многочлен стандартного вида За 3 – 5а 3 b 2 + 7. Его членами являются одночлены третьей, пятой и нулевой степени. Наибольшую из этих степеней называют степенью многочлена. Таким образом, этот многочлен является многочленом пятой степени.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.

Пример 3. Определим степень многочлена а 6 + 2а 2 b – а 6 + 1.
Для этого приведём многочлен к стандартному виду: а 6 + 2а 2 b – а 6 + 1 = 2a 2 b + 1.
Степень полученного многочлена равна трём. Значит, и степень заданного многочлена равна трём.

Если многочлен является числом, отличным от нуля, то степень такого многочлена равна 0. Число нуль называют нуль-многочленом. Его степень считается не определённой.

Среди многочленов выделяют многочлены с одной переменной. Многочлен n-й степени с одной переменной в стандартном виде записывается так: а0х n + а1х n-1 + а2х n-2 + … + аn-2х 2 + аn-1х + аn, где х — переменная, а0, a1 а2, …, аn-1, аn — произвольные числа, n N или n = 0. Коэффициент при х n называют старшим коэффициентом (в нашем случае это а0). Слагаемое, не содержащее переменной х, называют свободным членом многочлена (в нашем случае это аn). Например, старший коэффициент многочлена х 4 + 2х 3 х 2 + 3х равен 1, а свободный член равен нулю.

Заметим, что значение многочлена с переменной х при х = 0 равно свободному члену этого многочлена, а при х = 1 — сумме его коэффициентов.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Это конспект по математике на тему «Многочлен и его стандартный вид». Выберите дальнейшие действия:

Источник

Многочлены. Действия с многочленами.

теория по математике 📈 алгебраические выражения

Многочлен – это сумма одночленов. Одночлены, которые составляют многочлен, называют членами данного многочлена. Если многочлены состоят из двух или трех слагаемых, то их можно называть двучленами или трехчленами соответственно.

Стандартный вид многочлена

Многочлен называется приведенным к стандартному виду, если он не имеет подобных слагаемых, и каждый его член имеет также стандартный вид.

Вспомним, что слагаемые, содержащие одинаковую буквенную часть или не имеющие буквенной части называют подобными. Если такие слагаемые есть, то их нужно сложить или вычесть, это действие называют приведением подобных слагаемых.

13х 2 –6х+ 11х 2

13х 2 –6х+11х 2 =24х 2 –6х

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16

Данный многочлен имеет две группы подобных слагаемых, одна выделена красным цветом, вторая синим цветом, слагаемое –16 не имеет подобных, поэтому его просто перепишем. Приводим подобные слагаемые и получаем многочлен стандартного вида:

6а 3 с 4 + 32х –9а 3 с 4 + 45х –16= –3а 3 с 4 +77х–16

Степень многочлена

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. При этом многочлен должен быть записан в стандартном виде. Рассмотрим на примерах, как определить степени многочленов.

4с 6 +7а 9 –18х

Степень многочлена, записанного в стандартном виде, равна 9, так как одночлен 7а 9 имеет степень равную 9 и она наибольшая по сравнению со степенями одночленов 4с 6 и –18х. Пример №5.

13х 4 у 7 +12х 3 у 6 –13

степень данного многочлена стандартного вида находим по наибольшей степени каждого одночлена: одночлен 13х 4 у 7 имеет 11 степень, так как складываем показатели 4 и 7; одночлен 12х 3 у 6 имеет соответственно 9 степень, а –13 имеет степень равную нулю (не содержит переменных). Таким образом, получается, что наибольшая степень равна 11, значит и степень всего многочлена равна 11.

6а 5 +8ас+2а 5 –11ас

Данный многочлен не является многочленом стандартного вида, поэтому сначала приведем подобные слагаемые, получим 6а 5 +8ас+2а 5 –11ас=8а 5 –3ас. Теперь найдем степень у каждого одночлена: у 8а 5 пятая степень, у 3ас – вторая (каждая переменная имеет первую степень). Значит, у многочлена 6а 5 +8ас+2а 5 –11ас степень равна 5.

Сложение и вычитание многочленов

Многочлены можно как складывать, так и вычитать. То есть сумму или разность многочленов можно представить в виде многочлена стандартного вида. Рассмотрим на примерах сложение и вычитание многочленов.

Пример №7. Выполним сложение многочленов:

6х 2 +8х–11 и –9х 2 +3х+19

Сначала составим их сумму (6х 2 +8х–11) + (–9х 2 +3х+19), теперь раскроем скобки, помня о том, что, если перед скобками стоит знак «плюс», то знаки у слагаемых в скобках не изменяются:

6х 2 +8х–11–9х 2 +3х+19

Теперь приведем подобные слагаемые и получим многочлен стандартного вида:

Пример №8. Выполним вычитание многочленов:

7х 5 +12х 3 –24 и 2х 5 +36х 3 –11

Составим разность многочленов (7х 5 +12х 3 – 24) – (2х 5 +36х 3 –11), раскроем скобки, помня о том, что, если перед скобками стоит «минус», то надо изменить знаки у слагаемых в скобках на противоположные:

7х 5 +12х 3 – 24 – 2х 5 –36х 3 +11

Приведем подобные слагаемые и получим многочлен:

Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена.

Пример №9. Умножим одночлен 7х на многочлен 6х 2 +3х–5. Запишем в виде произведения:

выполним умножение 7х на каждое слагаемое в скобках: 7х•6х 2 +7х•3х–7х•(–5) и получим:

Запись данного выражения можно делать короче, выполняя промежуточные действия устно:

7х•(6х 2 +3х–5)= 42х 3 +21х 2 +35х

92с(–2с+10а 6 )= –184с 2 +920са 6

Здесь выполнение умножения одночлена на многочлен выполнено без записи промежуточных действий умножения.

Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Пример №11. Умножим многочлен (а+с) на многочлен (х+с).

Составим произведение (а+с)(х+с); умножим сначала а на (х+с), затем с на (х+с); получим:

Получили многочлен в стандартном виде. Здесь были даны простые многочлены, не содержащие степеней. Запись выражения выглядит так:

Пример №12. Умножим многочлен 8х 3 –12х на многочлен 3х 5 –10х. Имеем:

(8х 3 –12х)(3х 5 –10х)=8х 3 •3х 5 +8х 3 •(–10х)–12х•3х 5 –12х•(–10х)=24х 8 –80х 4 –36х 6 +120х 2

Здесь были даны многочлены, содержащие степень, поэтому промежуточное решение лучше расписывать, чтобы не допустить ошибок.

Разложение многочлена на множители

Существуют такие способы для разложения многочлена на множители, как вынесение общего множителя за скобки и разложение на множители способом группировки.

Способ №1. Вынесение общего множителя за скобки.

Вынесение общего множителя за скобки – это представление многочлена в виде произведения одночлена и многочлена.

6х 4 – 20х 2 =2х 2 (3х 2 –10)

При вынесении за скобки степеней помним правило, что при делении степеней с одинаковым основанием показатели вычитаем, а основание оставляем прежним.

Пример №14. Разложим на множители многочлен:

12с 5 х 7 –36с 6 х 2 +72асх 3

12с 5 х 7 –36с 6 х 2 +72асх 3 =12сх 2 (с 4 х 5 –3с 5 +6ах)

Сделаем вывод, что вынесение общего множителя за скобки – это выполнение действия деления каждого члена многочлена на его общий делитель.

Способ №2. Способ группировки.

Чтобы выполнить разложение на множители способом группировки необходимо следовать определенному алгоритму (ключевое слово в данном способе – группировка). Группировка слагаемых выполняется таким образом, чтобы в каждой группе можно было выполнить вынесение общего множителя за скобки, а в скобках оставались одинаковые выражения, это обычно определяется устно.

Пример №15. Разложим на множители многочлен:

Сгруппируем, например, слагаемые первое с последним, а второе с третьим (можно было первое с третьим, а второе с последним):

Теперь видим, что в каждой группе есть множитель, который можно вынести за скобки:

В полученном выражении видно, что в обеих скобках есть сумма х и d, вынесем эту сумму снова за скобки:

Таким образом, мы получили произведение двух выражений, то есть разложили данный многочлен на множители.

Пример №16. Разложим на множители многочлен:

Сгруппируем по порядку, чтобы знаки у слагаемых в скобках были одинаковые:

Вынесем общий множитель в каждой группе:

Вынесем за скобки одинаковые выражения:

Пример №17. Разложим на множители многочлен:

Сгруппируем по порядку, обращая внимание на знак перед х 2 :

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)

Если перед первым слагаемым, которое мы заключаем в скобки, стоит знак «минус», то мы ставим его перед скобкой, а знаки у слагаемых в скобках изменяем на противоположные. Тогда у нас в обеих скобках получатся одинаковые знаки.

Выносим за скобки общий множитель. В данном случае он есть только в первых скобках:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)

Выносим за скобки одинаковые выражения, обращая внимание на то, что перед второй скобкой не записан общий множитель, значит, он равен 1:

х 5 –х 3 –х 2 +1 =(х 5 –х 3 )–(х 2 –1)= х 3 (х 2 –1)–(х 2 –1)=(х 2 –1)(х 3 –1)

Источник

Многочлен. Упрощение, степень, стандартный вид, нуль-многочлены

Содержание

Мы с вами уже разобрали, чем являются одночлены, и выяснили, что при произведении одночленов также получится одночлен. Однако совсем иная ситуация обстоит с суммой одночленов. Давайте рассмотрим на примере:

Если данные выражения не являются одночленами, то какое название мы можем им дать? Все просто — такие примеры называют многочленами.

Многочлены — это выражения, которые являются суммой нескольких одночленов.

Упрощение многочленов

Многочлены могут быть как небольшими, так и состоящими из нескольких частей. Давайте рассмотрим несколько примеров таких выражений:

В выражениях может находиться несколько подобных членов, что позволяет упростить само выражение. В данном выражении мы можем увидеть подобные одночлены, которые закрашены одинаковыми цветами:

Для упрощения такого многочлена нам нужно использовать правило подобных слагаемых, т.е. произвести отдельные арифметические действия над каждой подобной частью. В конце у нас получится такое выражение:

Такое упрощение называют приведением подобных членов многочлена. Это преобразование позволяет заменить многочлен на тождественно равный ему, но более простой — с меньшим количество членов.

Стандартный вид многочленов

Многочлен, состоящий из одночленов стандартного вида, расположенных в порядке убывания степеней и среди которых нет подобных, называют многочленом стандартного вида.

Одночлены в многочлене стандартного вида располагают в порядке убывания их степени, а свободный одночлен записывают в самом конце. Для примера можно привести следующие выражения:

Стоит отметить, что любой многочлен можно привести к стандартному виду, если привести подобные. То есть из выражения нестандартного вида:

Мы можем получить выражение стандартного вида:

Степень многочлена

Рассмотрим многочлен стандартного вида:

Степенью многочлена стандартного вида называют наибольшую из степеней одночленов, из которых этот многочлен составлен.

Давайте рассмотрим еще несколько примеров многочленов с их степенями:

$\color3x^<2>-xy+5y^<2>$ — степень равна двум

$\color 3x^<4>y^<2>$ — степень равна шести

$\color 3$ — степень равна нулю

Коэффициенты многочленов

Выделенные числа и будут являться коэффициентами переменных множителей.

Нуль-многочлены

Число 0, а также многочлены, которые тождественно равны нулю, называют нуль-многочленами. Примеры таких выражений:

Их не относят к многочленам стандартного вида и считается, что нуль-многочлены не имеют степени.

Источник

Многочлен, его стандартный вид, степень и коэффициенты членов.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Для удобства описания многочленов вводится определение члена многочлена.

Члены многочлена – это составляющие многочлен одночлены.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

Подобными членами многочлена называются подобные слагаемые в многочлене.

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Многочлен стандартного вида – это многочлен, каждый член которого является одночленом стандартного вида и который не содержит подобных членов.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду.

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов, находящихся в его составе.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Теперь выясним, как найти степень многочлена произвольного вида.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Коэффициенты членов многочлена

Пусть все члены многочлена являются одночленами стандартного вида. Коэффициенты одночленов в этом случае называют коэффициентами членов многочлена. Часто можно слышать, что коэффициенты членов многочлена называют коэффициентами многочлена.

Источник

Алгебра. 7 класс

Конспект урока

Перечень рассматриваемых вопросов:

Многочлен – сумма одночленов.

Любой многочлен можно разложить на два множителя, один из которых это число, не равное нулю.

Произведение нулевого многочлена на любой многочлен есть нулевой многочлен.

Чтобы найти произведение многочленов, необходимо каждый член одного многочлена умножить на каждый член другого многочлена, а полученные одночлены сложить.

Теоретический материал для самостоятельного изучения.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Это мы научились выполнять на предыдущем занятии.

Сегодня мы будем находить произведение многочленов.

Для начала выясним, что такое произведение многочленов.

Оказывается, произведение многочленов равно многочлену, членами которого являются произведения каждого члена другого многочлена. Т. е. чтобы найти произведение многочленов, необходимо каждый член одного многочлена умножить на каждый член другого многочлена, а полученные одночлены сложить.

Например, так выглядит произведение многочленов а + с и многочлена х + у.

Найдите произведение многочленов а + с и х + у.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Видно, что произведение двух многочленов не зависит от того, какой из многочленов будем мы умножать.

Если поменяем полученные равенства местами, то получим разложение многочлена на множители.

ах + ау + сх +су = (а + с)(х + у)

Введём определение разложения многочлена на множители.

Разложением многочлена на множители называют его преобразование в произведение двух или нескольких многочленов.

Пример. Разложите многочлен на множители

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Для этого возьмём любое число, не равное нулю, например, пять, вынесем его за скобки. Получается разложение на множители, один из которых имеет нулевую степень (это число пять), а другой – ту же степень, что и исходный многочлен (степень многочлена один).

Стоит отметить, что, если при умножении многочленов, один из них не представлен (или записан) в нестандартном виде, то его сначала можно привести к стандартному виду, а затем выполнить вычисления. В противном случае вычисления могут быть более сложными.

Найдём двумя способами произведение многочленов (2а – 4с + а)( х + 3у +х).

Первый способ: сначала приведём к стандартному виду тот многочлен, который записан не в стандартном виде, и затем выполним умножение.

Второй способ: будем выполнять умножение сразу, а затем приводить полученный многочлен к стандартному виду.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Запись первым способом короче, но результат вычислений одинаковый.

Выполним ещё одно задание.

Найдём произведение многочленов.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Данное выражение будет равно нулю.

Следовательно, произведение нулевого многочлена на любой многочлен есть нулевой многочлен.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Доказательство: для доказательства данного равенства, воспользуемся формулой площади прямоугольника. S = ab, где а, b – стороны прямоугольника.

Для этого на рисунке выделим 6 прямоугольников (первый – со сторонами а и с, второй – со сторонами у и с, третий – со сторонами а и k, четвёртый – со сторонами а и х, пятый – со сторонами у и k, шестой – со сторонами у и х).

Чтобы найти площадь прямоугольника, состоящего из шести других, можно найти площадь каждого из шести прямоугольников, а затем сложить все найденные площади. Или сразу найти площадь прямоугольника, состоящего из шести других, как произведение двух его смежных сторон (а + у) и (с + k + х).

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Что и требовалось доказать.

Разбор заданий тренировочного модуля.

1. Упростите выражение.

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Что такое степень многочлена в алгебре 7 класс. Смотреть фото Что такое степень многочлена в алгебре 7 класс. Смотреть картинку Что такое степень многочлена в алгебре 7 класс. Картинка про Что такое степень многочлена в алгебре 7 класс. Фото Что такое степень многочлена в алгебре 7 класс

Это верное выражение.

Итак, сегодня мы получили представление о том, как находить произведение многочленов, раскрывать скобки, выполнять разложение многочленов на множители.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *