Что такое стереометрия в геометрии определение

Стереометрия

Не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).

Аксиомы стереометрии

Многогранник

Литература

Полезное

Смотреть что такое «Стереометрия» в других словарях:

стереометрия — стереометрия … Орфографический словарь-справочник

СТЕРЕОМЕТРИЯ — (греч., от stereos плотный, и metreo меряю). Часть геометрии, трактующая о свойстве твердых тел, находящихся не на плоскостях, противоположная планиметрии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, часть ГЕОМЕТРИИ, в которой изучаются фигуры в трехмерном пространстве. Стереометрия включает изучение плоскостей, объемных геометрических тел, их всевозможных сечений и пересечений, а также измерение объемов и площадей тел … Научно-технический энциклопедический словарь

стереометрия — и, ж. stéréometrie, нем. Stereometrie <гр. stereos телесный + metreo измеряю. Раздел геометрии, изучающий объемные фигуры. Крысин 1998. || Название игрушки по Фребелю. Возьмем хотя стереометрию. Игрушка эта стоит 2 р. 50 к., что очень дорого.… … Исторический словарь галлицизмов русского языка

стереометрия — (неправильно стереометрия) … Словарь трудностей произношения и ударения в современном русском языке

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, стереометрии, мн. нет, жен. (от греч. stereos плотный и metreo мерю) (мат.). Геометрия в пространстве, отдел геометрии, в котором изучаются фигуры, не лежащие в одной плоскости, в отличие от планиметрии. Толковый словарь Ушакова.… … Толковый словарь Ушакова

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, и, жен. Раздел геометрии, изучающий фигуры, лежащие в пространстве. | прил. стереометрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

СТЕРЕОМЕТРИЯ — жен., греч. часть геометрии, измеренье тел, толщ. метрический чертеж. графия, черченье тел, толщ. Стереографическая проекция земного шара, перспективный чертеж, как бы пришлось смотреть на прозрачное тело. Стереотип, неразборная форма для печати… … Толковый словарь Даля

стереометрия — сущ., кол во синонимов: 2 • геометрия (9) • математика (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Источник

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Предмет стереометрии

В 7-9 классах мы изучали только те геометрические фигуры, которые полностью лежат в одной плоскости. Грубо говоря, все построения, которые мы делали на уроках, можно было точно выполнить на листе бумаги. Тем самым мы могли проверить с помощью построения, правильно ли решена та или иная задача. На самом деле мы изучали только один раздел геометрии – планиметрию, которая как раз рассматривает построения на плоскости и свойства плоских фигур.

Однако в реальности мир значительно сложнее. Наше пространство считается трехмерным, и большинство реальных объектов обладают объемом. Свойства фигур в пространстве изучает специальный раздел геометрии – стереометрия.

Сразу заметим, что при изучении стереометрии используются все те знания, которые были получены в рамках планиметрии.

Основные понятия стереометрии

Стереометрия оперирует всеми теми понятиями, которые нам известны из планиметрии – точка, прямая, окружность, треугольник и т. д. Но помимо них добавляются и иные термины.

Важнейшее из основных понятий стереометрии – это плоскость. Иногда в литературе применяется сокращение плос-ть. Строгого определения плоскости в рамках геометрии не дают, это понятие считается исходным, как понятия точки или прямой в планиметрии. Лишь некоторые ее свойства косвенно указываются с помощью аксиом. В реальной жизни примерами плоскости являются поверхность стола или лист бумаги. Однако, в отличие от них, плоскость не имеет границы, она бесконечна (как и прямая). Плоскость не имеет кривизны, поэтому, например, поверхность шара плоскостью не является. При изображении плоскости на чертежах ее обычно показывают в виде параллелограмма, при этом традиционно их обозначают маленькими буквами греческого алфавита, которые в планиметрии используются для обозначения углов (α, β, γ и т. п. ):

Если на плоскости проведена прямая, то она разобьет ее на две фигуры, которые именуются полуплоскостями:

Объемные фигуры – это часть пространства, которая отделена от остального пространства замкнутой поверхностью, то есть границей. Простейший пример объемной фигуры – это куб:

Поверхность куба – это 6 равных квадратов, каждый из них именуется гранью куба. Стороны этих квадратов – это уже ребра куба, а вершины квадратов одновременно являются и вершинами кубов.

Обратите внимание на изображение куба. Здесь он показан немного сбоку, в результате чего изображение становится объемным. Однако при этом мы вынуждены искажать некоторые размеры и углы на чертеже. Например, верхняя грань должна быть квадратом, но на плоском рисунке углы у этой грани прямыми не являются. При необходимости мы просто ставим специальный значок перпендикулярности между отрезками, который использовали и в планиметрии:

Важно понимать, что из-за искажения размеров у объемных фигур на плоских чертежах мы НЕ можем проверить решение некоторых стереометрических задач с помощью точных построений. Однако есть специальные компьютерные программы 3-D черчения, в которых такие построения уже можно выполнить. Также заметим, что на рисунке видны не все 6 граней куба, а только 3 из них. Если возникает необходимость показать невидимые на чертеже линии, то использует штриховые линии:

Все грани куба – это многоугольники. Если у фигуры вся ее поверхность состоит лишь из многоугольников, то она именуется многогранником. Таким образом, куб является примером многогранника. Другими примерами многогранников могут служить параллелепипед, пирамида, усеченная пирамида:

Более подробно различные виды многогранников будут рассматриваться позднее, тогда же им будут даны и их определения.

Если у объемной фигуры хоть одна поверхность не является многоугольником, то она не может считаться многогранником. Наиболее простыми и часто встречающимися такими фигурами являются шар, цилиндр, конус. Обратите внимание, что у них могут отсутствовать ребра и вершины, которые обязательно есть у многогранника:

Следует различать саму объемную фигуру и ее границу. Так, шар – это объемная фигура, а поверхность шара – это сфера.

Аксиомы стереометрии

Стереометрия, как и планиметрия, построена на нескольких базовых утверждениях, которые считаются абсолютно очевидными и не требуют доказательств. Их называют аксиомами. В свою очередь на основе аксиом доказываются простейшие теоремы стереометрии, которые далее используются для доказательства других, более сложных теорем и т. д. Грубо говоря, аксиомы – это исходные, первичные теоремы, принимаемые без доказательств.

Все вместе аксиомы образуют так называемую систему аксиом, или аксиоматику. Система аксиом должна быть непротиворечивой, то есть с ее помощью нельзя одновременно доказать и истинность, и ложность одной и той же теоремы. Также она должна быть ещё и независимой. Это значит, что ни одна из аксиом не может быть доказана с помощью других аксиом (в противном случае эту аксиому можно просто исключить из списка аксиом и считать ее теоремой). Наконец, аксиоматика должна быть полной, то есть с ее помощью любую теорему можно либо доказать, либо опровергнуть, а недоказуемых теорем быть не должно.

На самом деле вопрос о выборе системе аксиом в любой математической дисциплине, в том числе и в геометрии, является достаточно сложным. Первую аксиоматику сформулировал ещё Евклид, но в дальнейшем она была признана не вполне удачной. На сегодняшний день наибольшее распространение получила система аксиом Гильберта, которая была сформулирована только в 1899 г. Однако помимо неё существует ещё несколько аксиоматик: Погорелова, Колмогорова, Вейля, Биргофа и. т. д.

Прежде, чем формулировать сами аксиомы, ещё раз уточним, что есть так называемые неопределяемые понятия стереометрии. В аксиоматике Гильберта это плоскость, точка и прямая. Их свойства как раз и описываются аксиомами. Остальным понятиям даются определения, многие из них были сформулированы в 7-9 классах.

Всего в аксиоматике Гильберта есть 20 аксиом. Из них 15 относятся к планиметрии, и только 5 – к стереометрии. Сначала сформулируем две аксиомы о трех точках:

Здесь приведены два различных утверждения, поэтому их принято разделять на две отличных аксиомы. Для простоты запоминания их можно объединить в одно утверждение:

Другими словами, любые три точки находятся в одной плоскости. По этой причине для обозначения плос-тей иногда просто указывают три ее точки (важно, что они не должны принадлежать одной прямой).

Иногда используются утверждения, что три точки однозначно задают плос-ть или однозначно ее определяют.

Случай, когда три точки находятся на одной прямой, рассматривается отдельно и чуть ниже.

Далее сформулируем аксиому о четырех точках:

Сформулированные три аксиомы стереометрии легко подтверждаются примером из жизни. Возьмем стул с тремя ножками. Мы можем твердо установить его на пол, даже если длина ножек не одинакова. Однако, если у стула 4 ножки, то иногда (когда ножки стула имеют разную длину), стул начинает «шататься». Тремя точками он будет касаться пола, а четвертая опора будет висеть в воздухе. Это происходит из-за того, что 4 конца ножек могут находиться в разных плоскостях. У стула с тремя ножками такая ситуация невозможна, так как его концы ножек в любом случае окажутся в одной плос-ти.

Следующая аксиома отражает связь плос-ти и прямой:

Эту аксиому также подтверждает жизненный опыт. Если отметить на ровном столе любые две точки и приложить к ним ровную линейку, то контакт между линейкой и столом будет плотным, то есть без зазоров. Если же какие-то зазоры есть, то это свидетельствует лишь о неровности стола либо линейки.

Напомним, что в математике есть специальный символ «∈», который показывает, что один объект является частью другого, то есть, принадлежит ему. Так, если прямая АВ лежит в плос-ти α, то этот факт можно показать записью АВ∈α.

Возможен случай, когда прямая имеет с плос-тью единственную общую точку. В таких случаях принято говорить, что прямая и плос-ть пересекаются:

Последняя, пятая аксиома говорит о пересечении двух плос-тей.

Действительно, сложно представить себе ситуацию, когда две плос-ти коснулись друг друга только в одной точке. На основе сформулированных аксиом легко доказать одно из простейших и вместе с тем важнейших утверждений стереометрии.

Действительно, пусть у двух плос-тей, α и β, есть общая точка А. Тогда, согласно аксиоме 5, у них должна быть и другая общая точка, которую мы обозначим как В:

Рассмотрим прямую АВ. По аксиоме 4 она полностью принадлежит плос-ти α, ведь α принадлежат две ее точки. По той же причине можно утверждать, что АВ также принадлежит и β. Таким образом, АВ – общая прямая для α и β.

Но нам надо также показать, что никакая другая точка в пространстве не является общей для α и β. Действительно, пусть существует ещё и некоторая точка С, которая НЕ лежит на АВ, но является общей для α и β. Это означало бы, что через А, В и С проведены две различные плос-ти (α и β). Это противоречит аксиоме 2, поэтому такая точка С не существует, ч. т. д.

Вернемся к аксиомам 1 и 2. В них говорилось о 3 точках, причем отдельно оговаривалось, что они не должны принадлежать одной прямой. Теперь нам ясна причина этой оговорки. Только что доказанная теорема показывает, что через прямую (а значит, и через любые 3 ее точки) может проходить не одна, а как минимум 2 плос-ти. В дальнейшем мы покажем, что на самом деле через прямую можно провести бесконечное число плос-тей.

Простейшие следствия из аксиом стереометрии

На основе аксиом можно доказать несколько простых теорем стереометрии.

Доказательство. Возьмем произвольную прямую m и точку C, которая НЕ принадлежит m. Далее отметим на m две любые точки и обозначим их как А и В:

По аксиоме 1 через А, В, С можно провести некоторую плос-ть α. По аксиоме 4 прямая m будет принадлежать α. Тем самым мы показали, что существует плос-ть, проходящая через m и C. Единственность этой плос-ти вытекает уже из аксиомы 2, ведь через А, В и С нельзя провести две различных плос-ти, ч. т. д.

Иногда доказанный факт формулируют иначе: прямая и точка, не находящаяся на прямой, однозначно определяют проходящую через них плос-ть. То есть, указав прямую и точку, можно одновременно указать на ту плос-ть, которая задается ими.

Переходим к следующей теореме.

Отметим на произвольной прямой m точки А и В. Далее выберем ещё две точки в пространстве C и D, причем такие, что А, В, С и D не находятся в одной плос-ти. Тогда у нас есть плос-ти АВС и АВD, которые пересекаются по прямой АВ:

Теперь соединим С и D прямой. Прямая CD состоит из бесконечного количества точек. Через каждую из них можно провести единственную плос-ть, которая будет проходить через АВ. Так как точек бесконечно много, то и плос-тей будет бесконечно много. Осталось лишь показать, что никакие две таких плос-ти не будут совпадать, то есть все они различны.

Действительно, пусть две таких плос-ти совпадают, то есть на самом деле являются одной плос-тью. Тогда получается, что эта единая плоскость проходит через две точки прямой СD. Тогда, по аксиоме 4, вся прямая СD принадлежит этой плос-ти, в том числе и сами точки С и D. Но плос-ть проходит также через А и В. То есть получится, что А, В, С и D входят в состав одной плос-ти, а это не так. Это противоречие означает, что на самом деле все плоскости, проходящие через разные точки прямой CD, будут различны, ч. т. д.

Рассмотрим ещё одну теорему:

Пусть пересекаются прямые m и n. Обозначим точку их пересечения как А. Также выберем на m некоторую точку В, а на n – точку C. Мы можем построить плос-ть α через точки А, В и C, и она будет единственной. Так как и А, и В принадлежат α, то и вся прямая m ей принадлежит (аксиома 4). Аналогично и прямая n находится на плос-ти α. То есть α как раз и является плос-тью, о которой говорится в теореме. Никакая другая плос-ть не будет содержать обе прямые m и n, ведь в противном случае она проходила бы через точки А, В и С, то есть совпадала бы с α.

Эта теорема также говорит о том, что две пересекающиеся прямые однозначно определяют проходящую через них плос-ть.

Задачи на использование аксиом

Простейшие задачи стереометрии по большей части не требуют проведения расчетов и использования формул, однако приходится использовать строгие логические умозаключения. Чаще всего они сводятся к доказательству довольно очевидных утверждений.

Примечание. Попытайтесь перед просмотром решения задач самостоятельно их решить.

Задание. Точки M, N, Р, К не лежат на одной прямой. Могут ли прямые MN и РК пересекаться?

Решение. Если бы MN и РК пересекались бы, то через эти прямые можно было бы провести плос-ть. Эта плоскость содержала бы все точки прямых, в том числе M, N, Р и К. Но эти точки по условию не могут принадлежать одной прямой. Значит, MN и РК не пересекаются.

Задание. Есть 4 точки, из которых три принадлежат одной прямой. Могут ли эти точки не лежать на единой плоскости?

Решение. Пусть точки Р, К, М находятся на единой прямой РК, а Н – ещё одна точка. Если Н также лежит на РК, то мы можем построить бесконечно много плос-тей, проходящих через РК, и каждая из них будет содержать все эти четыре точки. Если же Н не принадлежит РК, то всё равно через РК и Н можно провести плос-ть, но на этот раз единственную. И эта плос-ть также будет содержать в точки Р, К, М и Н. В любом случае получается, что эти точки находятся на одной плос-ти.

Задание. Через пересекающиеся прямые m и n проведена плоскость α. Верно ли, что любая прямая h, пересекающая m и n в различных точках, будет также принадлежать α?

Решение. Пусть прямая h пересекает m и n в точках В и C соответственно. Раз эти точки принадлежат прямым m и n, то они принадлежат и плос-ти α. Получается, что две точки прямой h (В и С) находятся на α. Тогда, по аксиоме 4, и вся прямая h также находится на α. То есть утверждение, сформулированное в условии задачи, верно.

Задание. Три прямые проходят через общую точку M. Верно ли, что они находятся в одной плоскости?

Решение. Неверно, они могут как находиться, так и не находиться в одной плоскости. Оба случая проиллюстрируем примерами. Пусть есть точки М, Р, К и Н, причем они одной плос-ти не принадлежат. Тогда прямые МР, МК, МН пересекаются в М, но находятся в одной плос-ти. Если же мы выберем точки М, Р, К, Н так, чтобы они находились на единой плос-ти, то прямые МР, МК, МН пересекутся в М и будут принадлежать одной плос-ти.

Задание. Плос-ти α и β не пересекаются. Прямая m пересекает α. Докажите, что она также пересекает и β.

Решение. Сразу скажем, что эта задача сложнее предыдущих, и ее решение неочевидно. Дадим подсказку: при решении стереометрических задач можно использовать и аксиомы планиметрии, в том числе и знаменитую аксиому о параллельных прямых.

Теперь приведем решение. Пусть m пересекает α в точке А. Отметим на β произвольную точку С. Теперь мы можем провести ещё одну плос-ть γ через прямую m и точку C:

Плос-ти γ и β имеют общую точку С. Значит, они пересекаются по некоторой прямой k. У плос-тей γ и α есть общая точка А, поэтому и они пересекаются по некоторой прямой n.

Теперь проанализируем расположение прямых n и k. Они не могут пересекаться, ведь тогда бы точка их пересечения была общей для α и β, а они не пересекаются. Также n и k лежат в одной плос-ти. Тогда n и k по определению параллельны.

Напомним, что по аксиоме параллельности через точку на плос-ти может быть проведена лишь одна прямая, параллельная заданной прямой. В частности, через точку А мы можем провести только одну прямую, параллельную k. Такая прямая уже проведена – это n. Тогда вторая прямая, проходящая через А (это как раз m) либо совпадает с n, либо пересекает k. Совпадать с n она не может, ведь в этом случае m будет полностью принадлежать плос-ти α, а она по условию лишь пересекает ее. Значит, m должна пересечь k в некоторой точке В. Эта точка В принадлежит прямой k, а значит, находится и на плос-ти β. Тем самым мы показали, что m и β пересекаются в точке В.

Для полноты доказательства надо ещё показать, что m имеет ровно одну общую точку с В. Действительно, если бы была ещё одна общая точка, то по аксиоме 4 вся прямая m находилась бы на β. Тогда и точка А оказалась бы на β, то есть она стала бы общей точкой α и β, но таких общих точек по условию не существует, ч. т. д.

Задание. Четыре точки в пространстве выбраны так, что никакая прямая, проходящая через две из этих точек не пересекается с прямой, проходящей через другие две точки. Могут ли эти четыре точки находиться на одной плос-ти?

Решение. Предположим, что есть точки М, Р, К и Н, удовлетворяющие условию задачи и находящиеся на одной плос-ти. Ясно, что никакие три из этих точек не принадлежат одной прямой. Тогда мы можем построить четырехугольник МРКН.

Прямые МР и КН по условию не должны пересекаться, то есть они параллельны. Аналогично параллельны МН и РК. Значит, МРКН – параллелограмм по его определению. Но в параллелограмме пересекаются диагонали МК и РН, а по условию и эти прямые не должны пересекаться. Получили противоречие. Из него вытекает, что М, Р, К и Н НЕ могут находиться на одной плоскости.

В ходе сегодняшнего урока мы познакомились с понятием стереометрии. Именно этот раздел геометрии мы будем изучать в течение 10 и 11 класса. Мы узнали о пяти основных стереометрических аксиомах следствиях из них. Использование аксиом в учебном процессе не только позволяет понять геометрию, но и развивает навыки строгого логического мышления, так необходимые в современном мире.

Источник

Основные понятия, аксиомы и теоремы стереометрии

Основные понятия стереометрии

Многогранник представляет собой геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два из которых, имеющие общую сторону, не лежат в одной плоскости. При этом сами многоугольники называются гранями, их стороны – ребрами многогранника, а их вершины – вершинами многогранника.

Фигура, образованная всеми гранями многогранника, называется его поверхностью (полной поверхностью), а сумма площадей всех его граней – площадью (полной) поверхности.

Куб – это многогранник, имеющий шесть граней, которые являются равными квадратами. Стороны квадратов называются ребрами куба, а вершины – вершинами куба.

Параллелепипед – это многогранник, у которого шесть граней и каждая из них – параллелограмм. Стороны параллелограммов называются ребрами параллелепипеда, а их вершины – вершинами параллелепипеда. Две грани параллелепипеда называются противолежащими, если они не имеют общего ребра, а имеющие общее ребро называются смежными. Иногда какие-нибудь две противолежащие грани параллелепипеда выделяются и называются основаниями, тогда остальные грани – боковыми гранями, а их стороны, соединяющие вершины оснований параллелепипеда, – его боковыми ребрами.

Прямой параллелепипед – это такой параллелепипед, у которого боковые грани – прямоугольники.

Прямоугольный параллелепипед – это параллелепипед, у которого все грани – прямоугольники. Заметим, что всякий прямоугольный параллелепипед является прямым параллелепипедом, но не любой прямой параллелепипед есть прямоугольный.

Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими. Отрезок, соединяющий противолежащие вершины параллелепипеда, называется диагональю параллелепипеда. У параллелепипеда всего четыре диагонали.

Призма (n-угольная) – это многогранник, у которого две грани – равные n-угольники, а остальные n граней – параллелограммы. Равные n-угольники называются основаниями, а параллелограммы – боковыми гранями призмы.

Прямая призма – это такая призма, у которой боковые грани – прямоугольники. Правильная n-угольная призма – это призма, у которой все боковые грани – прямоугольники, а ее основания – правильные n-угольники.

Сумма площадей боковых граней призмы называется площадью ее боковой поверхности (обозначается Sбок). Сумма площадей всех граней призмы называется площадью поверхности призмы (обозначается Sполн).

Пирамида (n-угольная) – это многогранник, у которого одна грань – какой-нибудь n-угольник, а остальные n граней – треугольники с общей вершиной; n-угольник называется основанием; треугольники, имеющие общую вершину, называются боковыми гранями, а их общая вершина называется вершиной пирамиды. Стороны граней пирамиды называются ее ребрами, а ребра, сходящиеся в вершине, называются боковыми.

Сумма площадей боковых граней пирамиды называется площадью боковой поверхности пирамиды (обозначается Sбок). Сумма площадей всех граней пирамиды называется площадью поверхности пирамиды (площадь поверхности обозначается Sполн).

Правильная n-угольная пирамида – это такая пирамида, основание которой – правильный n-угольник, а все боковые ребра равны между собой. У правильной пирамиды боковые грани – равные друг другу равнобедренные треугольники.

Треугольная пирамида называется тетраэдром, если все ее грани – равные правильные треугольники. Тетраэдр является частным случаем правильной треугольной пирамиды (т.е. не каждая правильная треугольная пирамида будет тетраэдром).

Аксиомы стереометрии

Аксиома 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Аксиома 2. Если две точки прямой лежат в плоскости, то все точки данной прямой лежат в этой плоскости. В этом случае говорят, что прямая лежит в плоскости или что плоскость проходит через прямую.

Аксиома 3. Если две плоскости имеют общую точку, то они имеют общую прямую, которой принадлежат все общие точки этих плоскостей. В этом случае говорят, что плоскости пересекаются по прямой.

Аксиома 4. В любой плоскости пространства выполняются все аксиомы планиметрии. Таким образом, в любой плоскости пространства можно использовать все доказанные теоремы и формулы из планиметрии.

Следствия из аксиом

Следствие 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна.

Следствие 2. Через две пересекающиеся прямые проходит плоскость и притом только одна.

Следствие 3. Через две параллельные прямые проходит плоскость и притом только одна.

Следствие 4. Из аксиомы 2 следует, что прямая, не лежащая в плоскости, не может иметь с плоскостью более одной общей точки. Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость.

Основные теоремы стереометрии

Теоремы о параллельности прямых и плоскостей

Определение: Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая а параллельна плоскости β, то пишут: a // β

Теорема 1: Если прямая AB параллельна какой-нибудь прямой CD, расположенной в плоскости P, то она параллельна самой плоскости.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 2: Если плоскость R проходит через прямую AB, параллельную другой плоскости P, и пересекает эту плоскость, то линия пересечения CD параллельна первой прямой AB.

Теорема 3: Если две параллельные плоскости P и Q пересекаются третьей плоскостью R, то линии пересечения AB и CD параллельны.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 4: Если две пересекающиеся прямые AB и DC одной плоскости соответственно параллельны двум прямым A1 B1 и C1 D1 другой плоскости, то эти плоскости параллельны.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теоремы о перпендикулярности прямых и плоскостей

Теорема 1: Для того что бы прямая AB была перпендикулярна плоскости P, необходимо и достаточно, чтобы она была перпендикулярна двум произвольным непараллельным прямым CD и EF, лежащим в этой плоскости.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 2: Для того, чтобы прямая DE проведенная на плоскости P через основание наклонной AC была ей перпендикулярна, необходимо и достаточно, чтобы эта прямая была перпендикулярна к проекции BC, наклонной на плоскость P (Достаточное условие этой теоремы называется «Теоремой о трех перпендикулярах»: AC, BC, DE).

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 3: Если две прямые AB и CD перпендикулярны одной плоскости P, то они параллельны между собой.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 4: Если две плоскости P и Q перпендикулярны одной прямой AB, то они параллельны друг другу.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теоремы о перпендикулярности плоскостей

Двугранный угол называется прямым, если его линейный угол прямой. Прямой двугранный угол равен смежному с ним двугранному углу.

Определение: Две плоскости называются взаимно перпендикулярными, если они образуют прямые двугранные углы.

Теорема 1:Перпендикулярность прямых в пространстве. Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они то же перпендикулярны.

Теорема 2: Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Следствие 1: Если из точки одной из двух взаимно перпендикулярных плоскостей проведен перпендикуляр к другой плоскости, то он принадлежит первой плоскости.

Следствие 2: Если две плоскости, перпендикулярные к третьей плоскости, пересекаются, то их линия пересечения есть перпендикуляр к этой плоскости.

Теорема о скрещивающихся прямых

Определение: Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Теорема 1: Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на этой прямой, то эти прямые скрещивающиеся.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Пусть нам дана плоскость α. Прямая АВ лежит в плоскости α, а прямая DC пересекается с плоскостью α в точке С, которая не лежит на прямой АВ (Рис. 1.). Докажем, что прямые АВ и DC являются скрещивающимися.

Теорема 2: Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Пусть нам даны две скрещивающиеся прямые АВ и CD. Докажем, что через прямую АВ проходит плоскость, параллельная прямой CD, и притом только одна.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Проведем через точку А прямую АЕ, параллельную прямой DC (Рис. 6.). По теореме о параллельных прямых, такая прямая существует и единственная. Тогда через две пересекающиеся прямые АВ и АЕ можно провести единственную плоскость α. Так как прямая DC, которая не лежит в плоскости α, параллельна прямой АЕ, лежащей в плоскости α, значит, что прямая DC параллельна плоскости α, по признаку параллельности прямой и плоскости. Существование доказано.

Докажем единственность такой плоскости. Пусть существует другая плоскость β, которая проходит через прямую АВ и параллельна прямой DC. Тогда прямая АЕ пересекает плоскость β, а значит и параллельная ей прямая DC пересекает плоскость β, по лемме. То есть, прямая DC не параллельна плоскости β. Получили противоречие. Следовательно, плоскость α – единственная. Теорема доказана.

Теорема о трех перпендикулярах

Теорема 2: (о трех перпендикулярах). Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Доказательство.

Пусть AB — перпендикуляр к плоскости a, AC — наклонная и c — прямая в плоскости

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Взаимное расположение прямых в пространстве

Основные фигуры в стереометрии

Симметрия фигур

Двугранный угол

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Таким образом, линейный угол двугранного угла – это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла.

Двугранный угол называется прямым (острым, тупым), если его градусная мера равна 90° (меньше 90°, больше 90°).

Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника.

Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку.

Две плоскости называются перпендикулярными, если угол между ними равен 90°.

Теорема 1: (признак перпендикулярности плоскостей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Теорема 2: Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости.

Призма

Призма – многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани – параллелограммами, имеющими общие стороны с этими многоугольниками.

Основания – это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях. На чертеже это: ABCDE и KLMNP.

Боковые грани – все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. На чертеже это: ABLK, BCML, CDNM, DEPN и EAKP.

Боковая поверхность – объединение боковых граней.

Полная поверхность – объединение оснований и боковой поверхности.

Боковые ребра – общие стороны боковых граней. На чертеже это: AK, BL, CM, DN и EP.

Высота – отрезок, соединяющий основания призмы и перпендикулярный им. На чертеже это, например, KR.

Диагональ – отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. На чертеже это, например, BP.

Диагональная плоскость – плоскость, проходящая через боковое ребро призмы и диагональ основания. Другое определение: диагональная плоскость – плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани.

Диагональное сечение – пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе, иногда, его частные случаи – ромб, прямоугольник, квадрат. На чертеже это, например, EBLP.

Перпендикулярное (ортогональное) сечение – пересечение призмы и плоскости, перпендикулярной ее боковому ребру. Площадь поверхности и объём призмы.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Параллелепипед

Параллелепипедом называется призма, основанием которой служит параллелограмм.

Параллелограммы, из которых составлен параллелепипед, называются его гранями, их стороны – ребрами, а вершины параллелограммов – вершинами параллелепипеда.

У параллелепипеда все грани — параллелограммы.

Параллелепипеды, как и всякие призмы, могут быть прямые и наклонные.

Обычно выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани ― боковыми гранями параллелепипеда.

Ребра параллелепипеда, не принадлежащие основаниям, называют боковыми ребрами.

Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих ребер — противоположными.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю параллелепипеда. A1 H H1 A2 An A3 B1 B2 n B3 B A B C D A1 B1 C1 D1 7

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями).

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

1. Противоположные грани параллелепипеда равны и параллельны.
2. Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
3. Боковые грани прямого параллелепипеда — прямоугольники.
4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Диагонали прямоугольного параллелепипеда равны.

Пирамида

Пирамида – многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные, четырёхугольные и так далее.

Основание – многоугольник, которому не принадлежит вершина пирамиды. На чертеже основание это BCDE.

Грани, отличные от основания, называются боковыми.

Общая вершина боковых граней называется вершиной пирамиды (именно вершиной всей пирамиды, а не просто вершиной, как все остальные вершины).

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание. Длина этого перпендикуляра обозначается буквой H.

Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины.

Диагональное сечение пирамиды – сечение пирамиды, проходящее через вершину пирамиды и диагональ основания.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Свойства пирамиды:

1. Боковые ребра пирамиды равны.
2. Боковые ребра пирамиды одинаково наклонены к основанию пирамиды.
3. Вершина пирамиды проектируется в центр окружности, описанной около основания пирамиды.
4. Высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны, а высота пирамиды лежит внутри пирамиды.
5. Все двугранные углы при основании пирамиды равны.
6. Вершина пирамиды проектируется в центр окружности, вписанной в основание.
7. Высоты всех боковых граней пирамиды, проведённые из вершины пирамиды, равны, а высота пирамиды лежит вне пирамиды.
8. Двугранные углы между боковыми гранями и плоскостью основания пирамиды равны.
9. Вершина пирамиды проектируется в центр окружности, вневписанной в основание пирамиды.

Правильная пирамида

Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основания.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Свойства правильной пирамиды:

1. В правильной треугольной пирамиде противоположные ребра попарно перпендикулярны.
2. Боковые ребра правильной пирамиды равны между собой.
3. Двугранные углы при основании правильной пирамиды равны между собой.
4. Двугранные углы при боковых рёбрах правильной пирамиды равны.

Тетраэдр

Тетраэдр – простейший многогранник, гранями которого являются четыре треугольника, иными словами, треугольная пирамида. Для тетраэдра любая из его граней может служить основанием. Всего у тетраэдра 4 грани, 4 вершины и 6 рёбер.

Тетраэдр называется правильным, если все его грани – равносторонние треугольники.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Свойства тетраэдра:

1. Все ребра правильного тетраэдра равны между собой.
2. Все грани правильного тетраэдра равны между собой.
3. Периметры, площади, высоты и все остальные элементы всех граней соответственно равны между собой.

Прямоугольная пирамида

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Усечённая пирамида

Усеченной пирамидой называется многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Свойства усечённой пирамиды:

1. Основания усечённой пирамиды — подобные многоугольники.
2. Боковые грани усечённой пирамиды — трапеции.
3. Боковые ребра правильной усеченной пирамиды равны и одинаково наклонены к основанию пирамиды.
4. Боковые грани правильной усечённой пирамиды — равные между собой равнобедренные трапеции и одинаково наклонены к основанию пирамиды.
5. Двугранные углы при боковых рёбрах правильной усечённой пирамиды равны.

Сфера и шар

Сфера – замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы.

Хордой сферы называется отрезок, соединяющий две точки сферы.

Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R.

Шар – геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра.

Обратите внимание: поверхность (или граница) шара называется сферой. Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой.

Радиусом, хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара.

Теорема 1: (о сечении сферы плоскостью). Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы.
Теорема 2: (о сечении шара плоскостью). Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении.

Доказательство

Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра (на рис. A и B), можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы.

Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара.

Любая прямая, лежащая в касательной плоскости сферы (шара) и проходящая через точку касания, называется касательной прямой к сфере (шару). По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку – точку касания.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Теорема 1: (признак касательной плоскости к сфере). Плоскость, перпендикулярная радиусу сферы и проходящая через его конец, лежащий на сфере, касается сферы.
Теорема 2: (о свойстве касательной плоскости к сфере). Касательная плоскость к сфере перпендикулярна радиусу, проведенному в точку касания.

Многогранники

Геометрическим телом (или просто телом) называется ограниченная связная фигура в пространстве, которая содержит все свои граничные точки, причем сколь угодно близко от любой граничной точки находятся внутренние точки фигуры. Границу геометрического тела называют также его поверхностью и говорят, что поверхность ограничивает тело.

Плоскость, по обе стороны которой имеются точки данного тела, называется секущей плоскостью.

Фигура, которая образуется при пересечении тела плоскостью, называется сечением тела.

Многогранником или многогранной поверхностью называется поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Тело, ограниченное многогранником, часто также называют многогранником.

Многоугольники, из которых составлен многогранник, называют его гранями. Стороны граней называются ребрами, а концы ребер — вершинами многогранника.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранники бывают выпуклые и невыпуклые.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. Все грани выпуклого многогранника являются выпуклыми многоугольниками.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.
2. Выпуклый многогранник может быть составлен из пирамид с общей вершиной, основания которых образуют поверхность многогранника.
3. Выпуклый многогранник лежит по одну сторону от плоскости каждой своей грани.
4. В любом выпуклом многограннике найдется грань с числом ребер меньшим или равным пяти.

Правильные многогранники

Выпуклый многогранник называется правильным, если все его грани — равные правильные многоугольники, и в каждой его вершине сходится одно и то же число ребер.

Все ребра правильного многогранника равны, все двугранные углы правильного многогранника равны, все многогранные углы правильного многогранника равны.

Существует ровно пять выпуклых правильных многогранников:

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон, и в каждой вершине многогранника сходится одно и то же число ребер. Все ребра правильного многогранника равны друг другу. Равны также все его двугранные углы, содержащие две грани с общим ребром.

1.Правильный тетраэдр (четырехгранник) ― многогранник, составленный из четырех правильных треугольников.

3. Правильный октаэдр (восьмигранник) ― многогранник, составленный из восьми правильных треугольников.

4. Правильный додекаэдр (двенадцатигранник) ― многогранник, составленный из двенадцати правильных пятиугольников.

5. Правильный икосаэдр (двадцатигранник) ― многогранник, составленный из двадцати правильных треугольников.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

Цилиндр

В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности.

Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности.

Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра.

Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части (круги), отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра – это два равных круга.

Образующей цилиндра называется отрезок (или длина этого отрезка) образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям.

Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра.

Высотой цилиндра называется перпендикуляр (или длина этого перпендикуляра), проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей.

Радиусом цилиндра называется радиус его оснований.

Цилиндр называется равносторонним, если его высота равна диаметру основания.

Цилиндр можно получить поворотом прямоугольника вокруг одной из его сторон на 360°.

Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого – образующие, а две другие – хорды оснований цилиндра.
Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра – прямоугольник, две стороны которого есть образующие цилиндра, а две другие – диаметры его оснований.

Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям. На чертеже ниже: слева – осевое сечение; в центре – сечение параллельное оси цилиндра; справа – сечение параллельное основанию цилиндра.

Что такое стереометрия в геометрии определение. Смотреть фото Что такое стереометрия в геометрии определение. Смотреть картинку Что такое стереометрия в геометрии определение. Картинка про Что такое стереометрия в геометрии определение. Фото Что такое стереометрия в геометрии определение

1. Основания цилиндра равны
2. Основания лежат в параллельных плоскостях
3. Образующие цилиндра параллельны и равны

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *