Что такое строение молекул

Молекула. Строение и типы химических связей

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Молекула — совокупность двух или более атомов, образующих наименьшее целое, на которое можно разделить чистое вещество, сохраняя при этом состав и его химические свойства (способность вступать в соединения, вкусовые свойства, свойства растворимости).

Молекула является одной из фундаментальных концепций современной науки. Впервые ввели эту концепцию европейские учёные в 1860 году, что послужило основой для развития химии, физики и ряду других естественных наук.

Молекула, по самому общему определению, — это частица, сформированная из нескольких (двух и более) атомов, связанных друг с другом ковалентной связью. Она не имеет электрического заряда, и все электроны в ее составе парные.

Молекулы, имеющие заряд, называются ионами, а непарные электроны — радикалами. Их качественный и количественный состав остается постоянным. Число ядер атомов, электронов и их взаиморасположение помогают различать молекулы разных веществ между собой.

Что такое молекула в физике

В физике термин молекула используется для описания характеристик газов, жидкостей и твердых тел. Мобильность молекул напрямую зависит от способности вещества к диффузии, его вязкости, теплопроводности и т. д. Впервые прямое экспериментальное подтверждение факта существования молекул получил французский физик Жан Перрен в 1906 году во время изучения броуновского движения.

Что такое молекула в химии

Для химической дисциплины изучение молекул играет одну из самых важных ролей. Благодаря химическим исследованиям была получена важнейшая информация о составе и характеристиках этой крошечной единицы материи.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Когда молекулы проходят через химические превращения, они обмениваются атомами и распадаются. Именно поэтому знания о строении и состоянии данных частиц являются основой для изучения химии веществ и их преобразования.

Основываясь на имеющихся знаниях о происходящих химических реакциях, мы имеем возможность прогнозировать структуру молекул задействованных в них веществ. Верен и обратный вывод: на основании знаний о структуре молекулы вещества вполне реально прогнозировать его поведенческие характеристики в ходе химической реакции.

Строение молекулы

Физико-химические свойства молекул обусловлены их конструктивным строением. Таким образом, многие свойства можно предсказать на основе структурной формулы. К таким свойствам относятся размер, форма, в некоторой степени конформация молекул (т.е. взаимное расположение отдельных атомов), в момент, когда вещество находилось в растворе, и, в заключение, реакционная способность.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Молекула воды имеет угловую структуру: это равнобедренный треугольник с углом наклона в верхней части 104°5′. Масса молекулы воды в состоянии пара составляет 18 г/моль. Вместе с тем, уровень молекулярной массы воды в жидком состоянии выше. Это указывает на то, что молекулы в жидкой воде связаны водородными связями. Когда вода замерзает, она расширяется (поскольку образуется множество водородных связей), однако лед легче воды, всплывает на ее поверхность, «самая тяжелая вода» при значении +4°C.

Молекула полярна: атом кислорода несет частично отрицательный заряд, а два атома водорода несут частично положительный заряд. Это означает, что молекула воды является диполем. Поэтому взаимодействие молекул воды создает между ними водородные связи, которые сказываются на физических свойствах воды. Благодаря высокой полярности молекул вода является непревзойденным растворителем других полярных соединений. В воде распадается больше веществ, чем в других жидкостях.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Типы химической связи

Связи обозначаются нижеуказанными признаками:

Структура молекул может быть представлена графически (структурной формулой). Главные взаимосвязи атомов в формуле обозначаются штрихами. В подобных структурах связи формируют целостную цепь и демонстрируют валентность элементов (атомов), которые их образовывали.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Структурные формулы также демонстрируют, каков внешний вид молекулы (линейный, циклический, наличие радикалов и т.д.).

В настоящее время интенсивно изучается структура частицы вещества. С этой целью применяются различные эксперименты и теоретические методы. Экспериментальные методы включают рентгеновский структурный анализ, спектроскопию, масс-спектрометрию и др. Теоретические методы включают методы расчета квантовой химии.

Масса (размер) молекулы

В соответствии с количеством ядер атомов могут быть выделены двух-, трехатомные и т.д. молекулы.

Mr — Относительная молекулярная (атомная) масса вещества — отношение массы молекул (или атомов) данного вещества к 1/12 массы атома углерода.

М — молярная масса — масса вещества, взятого в количестве одного моля.

В случае большого количества атомов молекулу называют макромолекулой.

При сложении масс атомов, из которых состоит частица, определяется молекулярная масса. В зависимости от размера молекулярной массы, все химические вещества разделяются на низко- и высокомолекулярные.

Свойства молекулы

В современной науке отмечаются следующие свойства молекул:

Между веществами проводится разграничение:

Изучение свойств и структуры молекул имеет фундаментальное значение для развития теоретической и прикладной науки, а также играет важнейшую роль в жизнедеятельности человека.

Источник

МОЛЕКУЛ СТРОЕНИЕ

МОЛЕКУЛ СТРОЕНИЕ (молекулярная структура), взаимное расположение атомов в молекулах. В ходе химических реакций происходит перегруппировка атомов в молекулах реагентов и образуются новые соединения. Поэтому одна из фундаментальных химических проблем состоит в выяснении расположения атомов в исходных соединениях и характера изменений при образовании из них других соединений.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Первые представления о структуре молекул основывались на анализе химического поведения вещества. Эти представления усложнялись по мере накопления знаний о химических свойствах веществ. Применение основных законов химии позволяло определить число и тип атомов, из которых состоит молекула данного соединения; эта информация содержится в химической формуле. Со временем химики осознали, что одной химической формулы недостаточно для точной характеристики молекулы, поскольку существуют молекулы-изомеры, имеющие одинаковые химические формулы, но разные свойства. Этот факт навел ученых на мысль, что атомы в молекуле должны иметь определенную топологию, стабилизируемую связями между ними. Впервые эту идею высказал в 1858 немецкий химик Ф.Кекуле. Согласно его представлениям, молекулу можно изобразить с помощью структурной формулы, в которой указаны не только сами атомы, но и связи между ними. Межатомные связи должны также соответствовать пространственному расположению атомов. Этапы развития представлений о строении молекулы метана отражены на рис. 1. Современным данным отвечает структура г: молекула имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Подобные исследования, однако, ничего не говорили о размерах молекул. Эта информация стала доступна лишь с разработкой соответствующих физических методов. Наиболее важным из них оказалась рентгеновская дифракция. Из картин рассеяния рентгеновских лучей на кристаллах появилась возможность определять точное положение атомов в кристалле, а для молекулярных кристаллов удалось локализовать атомы в отдельной молекуле. Среди других методов можно отметить дифракцию электронов при прохождении их через газы или пары и анализ вращательных спектров молекул.

Вся эта информация дает только общее представление о структуре молекулы. Природу химических связей позволяет исследовать современная квантовая теория. И хотя с достаточно высокой точностью молекулярную структуру рассчитать пока не удается, все известные данные о химических связях можно объяснить. Было даже предсказано существование новых типов химических связей.

Простая ковалентная связь.

Молекула водорода Н2 состоит из двух идентичных атомов. По данным физических измерений длина связи – расстояние между ядрами атомов водорода (протонами) – составляет 0,70 Å (1 Å = 10 –8 см), что отвечает радиусу атома водорода в основном состоянии, т.е. в состоянии с минимальной энергией. Образование связи между атомами можно объяснить лишь в предположении, что их электроны локализуются в основном между ядрами, образуя облако отрицательно заряженных связывающих частиц и удерживая вместе положительно заряженные протоны.

Рассмотрим два водородных атома в основном состоянии, т.е. состоянии, в котором их электроны находятся на 1s-орбитали. Каждый из этих электронов можно рассматривать как волну, а орбиталь – как стоячую волну. При сближении атомов орбитали начинают перекрываться (рис. 2), и, как в случае обычных волн, возникает интерференция – наложение волн (волновых функций) в области перекрывания. Если знаки волновых функций противоположны, то при интерференции волны уничтожают друг друга (деструктивная интерференция), а если одинаковы, то происходит их сложение (конструктивная интерференция). При сближении атомов водорода возможны два исхода в зависимости от того, находятся ли волновые функции в фазе (рис. 2,а) или в противофазе (рис. 2,б). В первом случае произойдет конструктивная интерференция, во втором – деструктивная, при этом появятся две молекулярные орбитали; для одной из них характерна высокая плотность в области между ядрами (рис. 2,в), для другой – низкая (рис. 2,г) – фактически узел с нулевой амплитудой, разделяющей ядра.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Таким образом, при сближении атомов водорода и их взаимодействии 1s-орбитали образуют две молекулярные орбитали, а два электрона должны заполнить какую-то одну из них. Электроны в атомах всегда стремятся занять наиболее устойчивое положение – то, в котором их энергия минимальна. Для орбитали, показанной на рис. 2,в, характерна высокая плотность в области между ядрами, и каждый электрон, занявший эту орбиталь, будет бóльшую часть времени находиться вблизи положительно заряженных ядер, т.е. его потенциальная энергия будет мала. Напротив, у орбитали, показанной на рис. 2,г, максимальная плотность имеет место в областях, расположенных слева и справа от ядер, и энергия электронов, находящихся на этой орбитали, будет велика. Итак, электроны обладают меньшей энергией, когда они занимают орбиталь в, причем эта энергия даже меньше той, которая была бы у них при бесконечном удалении атомов друг от друга. Поскольку в данном случае имеются только два электрона, оба они могут занимать более выгодную с энергетической точки зрения орбиталь, если их спины антипараллельны (принцип Паули). Поэтому энергия системы, состоящей из двух атомов водорода, при сближении атомов уменьшается, и чтобы затем удалить атомы друг от друга, потребуется энергия, равная энергии образования стабильной молекулы водорода Н2. Заметим, что необходимым условием существования молекулы водорода является преимущественная локализация электронов между ядрами в соответствии с тем, что мы уже говорили выше. Молекулярную орбиталь в называют связывающей, а орбиталь г – разрыхляющей.

Рассмотрим теперь сближение двух атомов гелия (атомный номер 2). Здесь тоже перекрывание 1s-орбиталей приводит к образованию двух молекулярных орбиталей, одной из которых соответствует более низкая, а другой – более высокая энергия. На этот раз, однако, на орбиталях необходимо разместить 4 электрона, по 2 электрона от каждого атома гелия. Низкоэнергетическую связывающую орбиталь могут заполнить только два из них, два других должны занять высокоэнергетическую орбиталь г. Уменьшение энергии вследствие благоприятной локализации первой пары примерно равно увеличению энергии, обусловленному неблагоприятным расположением второй пары. Теперь сближение атомов не дает выигрыша в энергии, и молекулярный гелий Не2 не образуется. Это удобно проиллюстрировать с помощью диаграммы (рис. 3); разные орбитали на ней представлены в виде энергетических уровней, на которых могут находиться электроны. Последние обозначены стрелками, направленными вверх и вниз, чтобы различить направления спинов. Два электрона могут занимать одну орбиталь, только если их спины антипараллельны.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Эти общие принципы выполняются при образовании молекул из атомов. Как только два атома сближаются настолько, что их атомные орбитали (АО) начинают перекрываться, появляются две молекулярные орбитали (МО): одна связывающая, другая разрыхляющая. Если на каждой из АО находится только по одному электрону, оба они могут занять связывающую МО с меньшей энергией, чем у АО, и образовать химическую связь. Связи такого типа, называемые теперь ковалентными, были давно известны химикам (представления о ковалентной связи легли в основу октетной теории связи, сформулированной американским физикохимиком Г.Льюисом в 1916). Их образование объясняли обобществлением пары электронов взаимодействующими атомами. Согласно современным представлениям, прочность связи зависит от степени перекрывания соответствующих орбиталей. Все сказанное выше позволяет предположить, что связи между атомами могут образовываться при обобществлении не только двух, но также одного или трех электронов. Однако они будут слабее обычных ковалентных связей по следующим причинам. При образовании одноэлектронной связи происходит уменьшение энергии только одного электрона, а в случае образования связи в результате обобществления трех электронов у двух из них энергия уменьшается, а у третьего, наоборот, увеличивается, компенсируя уменьшение энергии одного из первых двух электронов. В результате образующаяся трехэлектронная связь оказывается вдвое слабее обычной ковалентной.

Обобществление одного и трех электронов происходит при образовании молекулярного иона водорода Н2 + и молекулы ННе соответственно. Вообще же связи такого типа встречаются редко, а соответствующие молекулы обладают высокой реакционной способностью.

Валентность. Донорно-акцепторные связи.

Все изложенное выше предполагает, что атомы могут образовывать столько ковалентных связей, сколько орбиталей у них занято одним электроном, однако так бывает не всегда. [В принятой схеме заполнения АО вначале указывают номер оболочки, затем тип орбитали и далее, если на орбитали находится более одного электрона, – их число (верхний индекс). Так, запись (2s) 2 означает, что на s-орбитали второй оболочки находятся два электрона.] Атом углерода в основном состоянии ( 3 Р) имеет электронную конфигурацию (1s) 2 (2s) 2 (2px)(2py), при этом две орбитали не заполнены, т.е. содержат по одному электрону. Однако соединения двухвалентного углерода встречаются очень редко и обладают высокой химической активностью. Обычно углерод четырехвалентен, и связано это с тем, что для его перехода в возбужденное 5 S-состояние (1s) 2 (2s) (2px)(2py)(2pz) с четырьмя незаполненными орбиталями нужно совсем немного энергии. Энергетические затраты, связанные с переходом 2s-электрона на свободную 2р-орбиталь, с избытком компенсируются энергией, выделяющейся при образовании двух дополнительных связей. Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным. Атом азота с электронной конфигурацией (1s) 2 (2s) 2 (2px)(2py)(2pz) не образует пятивалентных соединений, поскольку энергия, необходимая для перевода 2s-электрона на 3d-орбиталь с образованием пятивалентной конфигурации (1s) 2 (2s)(2px)(2py)(2pz)(3d), слишком велика. Аналогичным образом, атомы бора с обычной конфигурацией (1s) 2 (2s) 2 (2p) могут образовывать трехвалентные соединения, находясь в возбужденном состоянии (1s) 2 (2s)(2px)(2py), которое возникает при переходе 2s-электрона на 2р-АО, но не образует пятивалентных соединений, поскольку переход в возбужденное состояние (1s)(2s)(2px)(2py)(2pz), обусловленный переводом одного из 1s-электронов на более высокий уровень, требует слишком много энергии. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом. Соответствующие данные для первых 10 элементов периодической системы суммированы ниже. Под валентным состоянием атома понимают состояние, в котором он образует химические связи, например состояние 5 S для четырехвалентного углерода.

Таблица: Валентные состояния и валентности первых десяти элементов периодической таблицы

ВАЛЕНТНЫЕ СОСТОЯНИЯ И ВАЛЕНТНОСТИ
ПЕРВЫХ ДЕСЯТИ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
ЭлементОсновное состояниеОбычное валентное состояниеОбычная валентность
H(1s)(1s)1
He(1s) 2(1s) 20
Li(1s) 2 (2s)(1s) 2 (2s)1
Be(1s) 2 (2s) 2(1s) 2 (2s)(2p)2
B(1s) 2 (2s) 2 (2p)(1s) 2 (2s)(2px)(2py)3
C(1s) 2 (2s) 2 (2px)(2py)(1s) 2 (2s)(2px)(2py)(2pz)4
N(1s) 2 (2s) 2 (2px)(2py)(2pz)(1s) 2 (2s) 2 (2px)(2py)(2pz)3
O(1s) 2 (2s) 2 (2px) 2 (2py)(2pz)(1s) 2 (2s) 2 (2px) 2 (2py)(2pz)2
F(1s) 2 (2s) 2 (2px) 2 (2py) 2 (2pz)(1s) 2 (2s) 2 (2px) 2 (2py) 2 (2pz)1
Ne(1s) 2 (2s) 2 (2px) 2 (2py) 2 (2pz) 2(1s) 2 (2s) 2 (2px) 2 (2py) 2 (2pz) 20

Указанные закономерности проявляются в следующих примерах:

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Все сказанное выше применимо лишь к нейтральным атомам. У ионов и соответствующих атомов число электронов различается; ионы могут обладать той же валентностью, что и другие атомы с таким же числом электронов. Так, у ионов N + и В – столько же электронов (шесть), что и у нейтрального атома углерода, и соответственно они четырехвалентны. Ионы аммония NH4 + и гидрида бора ВН4 – образуют комплексные соли и по своей электронной конфигурации аналогичны метану СН4.

Геометрия молекул. Гибридизация.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Аналогичные рассуждения применимы и к другим типичным элементам IV, V и VI групп периодической таблицы. Четырехвалентные элементы IV группы (Si, Ge, Sn и Pb) всегда образуют тетраэдрические структуры, однако другие элементы V и VI групп (P, S, As, Se, Sb, Te) отличаются от азота и кислорода и образуют соединения с валентными углами, близкими к 90°. По-видимому, из-за большего размера этих атомов взаимного отталкивания валентных электронов оказывается недостаточно, чтобы стала возможна гибридизация, наблюдаемая для N и О.

Связи с участием d-орбиталей.

В отличие от азота атом фосфора может образовывать пять ковалентных связей. В основном состоянии фосфор имеет конфигурацию (1s) 2 (2s) 2 (2p) 6 (3s) 2 (3px)(3py)(3pz) и является трехвалентным, образуя, как и азот, соединения типа PF3. Однако в этом случае возможно участие 3s-электронов в образовании связей, поскольку d-АО (3d) имеют такое же главное квантовое число. Действительно, известны и соединения пятивалентного фосфора типа PF5, где фосфор находится в валентном состоянии +5, согласующемся с электронной конфигурацией (1s) 2 (2s) 2 (2p) 6 (3s)(3px)(3py)(3pz)(3d); связи с этом случае образуются в результате sp 3 d-гибридизации (т.е. в результате смешивания одной s-, трех р— и одной d-АО). Оптимальной структурой с точки зрения уменьшения взаимного отталкивания пар валентных электронов является треугольная бипирамида (рис. 5,а). Сера может быть не только двухвалентной, но также четырех- (SF4) и шестивалентной (SF6), находясь в состояниях (1s) 2 (2s) 2 (2p) 6 (3s) 2 (3px)(3py)(3pz)(3d) и (1s) 2 (2s) 2 (2p) 6 (3s)(3px)(3py)(3pz)(3d1)(3d2) соответственно. В соединениях четырехвалентной серы взаимное отталкивание электронов 3-й оболочки оптимизируется при гибридизации орбиталей всех ее электронов. Структура соединений этого типа подобна структуре PF5, но одна из вершин треугольной бипирамиды занята парой неподеленных электронов 3-й оболочки (рис. 5,б). В соединениях шестивалентной серы взаимное отталкивание электронов минимизируется при sp 3 d 2 гибридизации, когда все орбитали эквивалентны и направлены к вершинам правильного октаэдра (рис. 5,в).Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Кратные связи.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Этот новый тип связи отличается от тех, которые образуются при перекрывании орбиталей по линии соединения атомов, в двух отношениях. Связи последнего типа, одинарные связи С–С, аксиально симметричны, и поэтому на них не влияет вращение соединяемых ими групп. Напротив, перекрывание р-орбиталей зависит от того, лежат ли все шесть атомов в молекуле этилена в одной плоскости, поскольку для оптимального перекрывания р-АО должны быть параллельны. Таким образом, если вращение вокруг одинарной связи С–С может происходить относительно свободно, то вокруг двойной связи С=С оно сильно затруднено. И действительно, молекула этилена – это жесткая плоская структура. Второе различие касается степени перекрывания орбиталей. Поперечное перекрывание р-АО относительно неэффективно, и, следовательно, связи такого типа слабые. Поэтому этилен химически более активен, чем насыщенные соединения, имеющие только одинарные связи.

Что такое строение молекул. Смотреть фото Что такое строение молекул. Смотреть картинку Что такое строение молекул. Картинка про Что такое строение молекул. Фото Что такое строение молекул

Связи, образующиеся при перекрывании орбиталей по линии соединения атомов (продольном перекрывании), называются s-связями, а при поперечном перекрывании – p-связями.

Молекулы некоторых соединений, например ацетилена С2Н2, содержат тройные связи. В них каждый атом углерода связан со своим соседом s-связями, образованными sp-гибридными орбиталями. Они коллинеарны, поэтому четыре атома в молекуле ацетилена лежат на одной прямой. Остальные р-АО атомов углерода при перекрывании образуют две p-связи.

Ароматические соединения.

Соединения, содержащие многоцентровые связи.

Перспективы.

К настоящему времени общие принципы строения молекул можно считать установленными. Разработаны физико-химические методы определения структуры сложных молекул, в том числе и биологических. В ближайшее время возможен прогресс в двух связанных между собой направлениях. Следует ожидать, во-первых, повышения точности квантовомеханических расчетов и, во-вторых, усовершенствования экспериментальных методов измерения соответствующих молекулярных параметров.

Кондратьев В.Н. Структура атомов и молекул. М., 1959
Коулсон Ч. Валентность. М., 1965
Слэтер Дж. Электронная структура молекул. М., 1965
Картмелл Э., Фоулс Г. Валентность и строение молекул. М., 1979

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *