Что такое вспомогательный угол

Метод введения вспомогательного угла

Преобразование выражения a sin х + b cos х путем введения вспомогательного угла

Другими словами, если а 2 + b 2 = 1, то существует угол φ, такой, что

Прежде чем доказывать эту лемму, поясним ее на следующем примере:

Поэтому существует угол φ, такой, что \( \frac<\sqrt3> <2>\) = cos φ; 1 /2 = sin φ.

В качестве φ в данном случае можно выбрать любой из углов 30°, 30° ± 360°, 30° ± 2 • 360° и т. д.

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Итак, а = cos φ; b =sin φ, что и требовалось доказать.

Доказанная лемма позволяет преобразовать выражение a sin х + b cos х к более удобному для изучения виду.

Прежде всего вынесем за скобки выражение \(\sqrt\)

a sin х + b cos х = \(\sqrt\)(cos φ sin х + sin φ cos х) = \(\sqrt\) sin ( x + φ )

1) \( sin x + cos x = \sqrt2 (\frac<1> <\sqrt2>sin x + \frac<1><\sqrt2>cos x) = \sqrt2 (cos\frac<\pi><4>sin x + sin\frac<\pi><4>cos x ) =\\= \sqrt2(sinx + \frac<\pi><4>) \)

Полученную формулу sin x + cos x = \(\sqrt2(sinx + \frac<\pi><4>)\)полезно запомнить.

2) Если одно из чисел а и b положительно, а другое отрицательно, то выражение
a sin х + b cos х удобнее преобразовывать не к синусу суммы, а к синусу разности двух углов. Так,

где под φ можно подразумевать любой угол, удовлетворяющий условиям:

В частности, можно положить φ = arctg 4 /3. Тогда получим:

Источник

Метод вспомогательного угла в тригонометрических уравнениях

На уроках алгебры учителя рассказывают, что существует небольшой (на самом деле — очень даже большой) класс тригонометрических уравнений, которые не решаются стандартными способами — ни через разложение на множители, ни через замену переменной, ни даже через однородные слагаемые. В этом случае в дело вступает принципиально другой подход — метод вспомогательного угла.

Что это за метод и как его применять? Для начала вспомним формулы синуса суммы/разности и косинуса суммы/разности:

\[\begin& \sin \left( \alpha \pm \beta \right)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\& \cos \left( \alpha \pm \beta \right)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\\end\]

Думаю, эти формулы хорошо знакомы вам — из них выводятся формулы двойного аргумента, без которых в тригонометрии вообще никуда. Но давайте теперь рассмотрим простое уравнение:

Разделим обе части на 5:

\[\begin& \cos \alpha \sin x+\sin \alpha \cos x=1 \\& \sin \left( \alpha +x \right)=1 \\\end\]

Сегодня мы будем разбирать решение тригонометрических уравнений, а, точнее, один-единственный прием, который называется «метод вспомогательного угла». Почему именно этот метод? Просто потому, что за последние два-три дня, когда я занимался с учениками, которым рассказывал о решении тригонометрических уравнений, и мы разбирали, в том числе, метод вспомогательного угла, и все ученики как один допускают одну и ту же ошибку. А ведь метод вообщем-то несложный и, более того, это один из основных приемов в тригонометрии. Поэтому многие тригонометрические задачи иначе как методом вспомогательного угла вообще не решаются.

Поэтому сейчас для начала мы рассмотрим пару простеньких задач, а потом перейдем к задачам посерьезней. Однако все эти они так или иначе потребуют от нас применение метода вспомогательного угла, суть которого я расскажу уже в первой конструкции.

Решение простых тригонометрических задач

Пример № 1

Немного преобразуем наше выражение:

\[\sqrt<3>\cdot \sin 2x-\cos 2x=1\]

\[\sin \left( \alpha \pm \beta \right)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \]

Вернемся к нашему примеру. Все сведем к синусу разности. Но для начала уравнение необходимо немного преобразовать. Найдем коэффициент:

$\sqrt$ — это тот самый коэффициент, на который необходимо разделить обе части уравнения, чтобы перед синусом и косинусом появились числа, которые сами по себе являются синусами и косинусами. Давайте разделим:

Теперь перед нами формула синуса разности. Мы можем написать так:

Перед нами простейшая классическая тригонометрическая конструкция. Напомню:

Это и запишем для нашего конкретного выражения:

Нюансы решения

Итак, что нужно делать, если вам попалось подобный пример:

В связи с этим у внимательных учеников наверняка возникнет два вопроса.

Метод вспомогательного угла — это инструмент, который помогает свести «некрасивое» уравнение к вполне адекватному и «красивому».

Пример № 2

Нам потребуется только первые выкладки. Давайте приступим к работе над задачей:

\[\sqrt<3>\cdot \sin 2x+2\cdot \frac<1-\cos 2x><2>-1=2\cos x\]

\[\sqrt<3>\cdot \sin 2x+1-\cos 2x-1=2\cos x\]

\[\sqrt<3>\cdot \sin 2x-\cos 2x=2\cos x\]

Перепишем с учетом этого факта:

\[\frac<\sqrt<3>><2>\cdot \sin 2x-\frac<1><2>\cdot \cos 2x=\cos x\]

Внесем «минус» в скобку хитрым способом. Для этого заметим следующее:

Чтобы решить подобною задачу, нужно вспомнить такое:

\[\cos \alpha =\cos \beta \]

\[\left[ \begin& \alpha =\beta +2\text< >\!\!\pi\!\!\text< >n \\& \alpha =-\beta +2\text< >\!\!\pi\!\!\text< >n \\\end \right.\]

Разберемся с нашим примером:

Давайте посчитаем каждое из этих уравнений:

Запишем окончательный ответ:

Нюансы решения

На самом деле, это выражение решается множеством различных способов, однако именно метод вспомогательного угла является в данном случае оптимальным. Кроме того, на примере данной конструкции хотелось бы обратить ваше внимание еще на несколько интересных приемов и фактов:

Разбор более сложных задач

Пример № 1

Преобразуем первое слагаемое:

\[\sin 3x=\sin \left( 2x+x \right)=\sin 2x\cdot \cos x+\cos 2x\cdot \sin x\]

\[=2\left( 1-\cos 2x \right)\cdot \sin x\]

А теперь подставим все это в нашу исходную конструкцию:

\[\sin 2x\cos x+\cos 2x\sin x+2\sin x-2\cos x\sin x+4\cos x=5\]

\[\sin 2x\cos x-\operatorname-cos2\sin x+2\sin x+4\cos x=5\]

\[\sin \left( 2x-x \right)+2\sin x+4\cos x=5\]

Давайте введем нашу поправку:

\[\sin x\cdot \cos \varphi +\cos x\cdot \sin \varphi =1\]

\[\sin \left( x+\varphi \right)=1\]

Это частный случай, простейшая тригонометрическая конструкция:

Начертим радар и посмотрим, где такие значения встречаются:

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Возвращаясь к нашему выражению, мы напишем следующее:

Но и эту запись можно немного оптимизировать. Поскольку мы знаем следующее:

то в нашем случае можно записать так:

Пример № 2

Здесь потребуется еще более глубокое понимание методик решения стандартных задач без тригонометрии. Но для решения этого примера мы также используем метод вспомогательного угла.\[\]

\[5+2\sin 2x-5\cos x=5\sin x\]

Первое, что бросается в глаза — здесь нет степеней выше первой и поэтому ничего нельзя разложить по формулам разложения степеней. Воспользуется обратными выкладками:

\[5+4\sin x\cos x-5\cos x-5\sin x=0\]

\[3+2+4\sin x\cos x-5\left( \sin x+\cos x \right)=0\]

\[3+2\left( 1+2\sin x\cos x \right)-5\left( \sin x\cos x \right)=0\]

\[3+2\left( <<\sin >^<2>>x+2\sin x\cos x+co<^<2>>x \right)-5\left( \sin x+\cos x \right)=0\]

Что дает нам такая запись? Дело в том, что в первой скобке стоит точный квадрат. Свернем его и получим:

Предлагаю ввести новую переменную:

В этом случае мы получим выражение:

\[\left[ \begin& \sin x+\cos x=\frac<3> <2>\\& \sin x+\cos x=1 \\\end \right.\]

Разбираемся с каждым из этих выражений.

Первое уравнение корней не имеет, и для доказательства этого факта нам поможет иррациональность в знаменателе. Заметим следующее:

Разбираемся со вторым:

Решаем эту конструкцию:

В принципе, можно оставить ответ таким, а можно его расписать:

Важные моменты

Такая проблема возникает только тогда, когда речь идет о «некрасивых» аргументах. Когда у нас табличные значения, то ничего такого нет.

Надеюсь, сегодняшний урок помог вам разобраться, что такое метод вспомогательного угла и как его применять на примерах разного уровня сложности. Но это не единственный урок, посвященный решению задач методом вспомогательного угла. Поэтому оставайтесь с нами!

Источник

Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

2. Разложение на множители.

преобразуем и разложим на множители выражение в

левой части уравнения:

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

1) tan x = –1, 2) tan x = –3,

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

4. Переход к половинному углу.

5. Введение вспомогательного угла.

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

6. Преобразование произведения в сумму.

Источник

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

Пример 1. Решить уравнение \(6\cos^2x-13\sin x-13=0\)

Пример 2. Решить уравнение \(5\sin 2x=\cos 4x-3\)

Пример 3. Решить уравнение \(\mathrm\, x+3\mathrm\,x+4=0\)

Сделаем обратную замену:

Пример 4. Решить уравнение \(11\cos 2x-3=3\sin 3x-11\sin x\)

При помощи формул \(\sin 3x=3\sin x-4\sin^3x\) и \(\cos2x=1-2\sin^2x\) можно свести уравнение к уравнению только с \(\sin x\) :

Таким образом, корень \(t_3\) не подходит. Сделаем обратную замену:

\(\blacktriangleright\) Однородные тригонометрические уравнения второй степени: \[I. \quad <\Large>, \quad a\ne 0,c\ne 0\]

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Таким образом, данное уравнение при помощи деления на \(\cos^2x\) и замены \(t=\mathrm\,x\) сводится к квадратному уравнению:

Уравнения вида \[I’. \quad <\Large>, \quad a\ne0,c\ne 0\] с легкостью сводятся к уравнению вида \(I\) с помощью использования основного тригонометрического тождества: \[d=d\cdot 1=d\cdot (\sin^2x+\cos^2x)\]

Заметим, что благодаря формуле \(\sin2x=2\sin x\cos x\) однородное уравнение можно записать в виде

\(a\sin^2 x+b\sin 2x+c\cos^2x=0\)

Пример 5. Решить уравнение \(2\sin^2x+3\sin x\cos x=3\cos^2x+1\)

Подставим вместо \(1=\sin^2x+\cos^2x\) и получим:

\(\blacktriangleright\) Однородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0\]

Аналогично и \(\sin x=0\) не является решением такого уравнения.

Пример 6. Решить уравнение \(\sin x+\cos x=0\)

Разделим правую и левую части уравнения на \(\sin x\) :

\(1+\mathrm\, x=0 \Rightarrow \mathrm\, x=-1 \Rightarrow x=-\dfrac<\pi>4+\pi n, n\in\mathbb\)

\(\blacktriangleright\) Неоднородные тригонометрические уравнения первой степени: \[II.\quad <\Large>, a\ne0, b\ne 0, c\ne 0\]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: \(<\large<\sin x=2\sin<\dfrac x2>\cos<\dfrac x2>, \qquad \cos x=\cos^2 <\dfrac x2>-\sin^2 <\dfrac x2>,\qquad c=c\cdot \Big(\sin^2 <\dfrac x2>+\cos^2 <\dfrac x2>\Big)>>\) данное уравнение сведется к уравнению \(I\) :

Пример 7. Решить уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: \[\begin <|lc|cr|>\hline &&&\\ \sin<\alpha>=\dfrac<2\mathrm\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2> &&& \cos<\alpha>=\dfrac<1-\mathrm^2\, \dfrac<\alpha>2><1+\mathrm^2\, \dfrac<\alpha>2>\\&&&\\ \hline \end\] уравнение сведется к квадратному уравнению относительно \(\mathrm\, \dfrac x2\)

Пример 8. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
\[<\large\,\sin (x+\phi),>> \quad \text <где >\cos \phi=\dfrac a<\sqrt>\]

Для использования данной формулы нам понадобятся формулы сложения углов: \[\begin <|lc|cr|>\hline &&&\\ \sin<(\alpha\pm \beta)>=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha &&& \cos<(\alpha\pm \beta)>=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &&&\\ \hline \end\]

Пример 9. Решить то же уравнение \(\sin 2x-\sqrt3 \cos 2x=-1\)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на \(\sqrt<1^2+(-\sqrt3)^2>=2\) :

\(\dfrac12\sin 2x-\dfrac<\sqrt3>2\cos 2x=-\dfrac12\)

\(\sin 2x\cos \dfrac<\pi>3-\sin \dfrac<\pi>3\cos 2x=-\dfrac12 \Rightarrow \sin\left(2x-\dfrac<\pi>3\right)=-\dfrac12\)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

\(\blacktriangleright\) Если тригонометрическое уравнение можно свести к виду \[<\Large>, \text <где >a\ne 0, b\ne 0,\] то с помощью формулы \[<\large<(\sin x\pm\cos x)^2=1\pm2\sin x\cos x>> \ \ (*)\] данное уравнение можно свести к квадратному.

\(\blacktriangleright\) Формулы сокращенного умножения в тригонометрическом варианте:

\(I\) Квадрат суммы или разности \((A\pm B)^2=A^2\pm 2AB+B^2\) :

\((\sin x\pm \cos x)^2=\sin^2 x\pm 2\sin x\cos x+\cos^2x=(\sin^2 x+\cos^2 x)\pm 2\sin x\cos x=1\pm \sin 2x\)

\(II\) Разность квадратов \(A^2-B^2=(A-B)(A+B)\) :

\((\cos x-\sin x)(\cos x+\sin x)=\cos^2x-\sin^2x=\cos 2x\)

\(III\) Сумма или разность кубов \(A^3\pm B^3=(A\pm B)(A^2\mp AB+B^2)\) :

\(\sin^3x\pm \cos^3x=(\sin x\pm \cos x)(\sin^2x\mp \sin x\cos x+\cos^2x)=(\sin x\pm \cos x)(1\mp \sin x\cos x)=\)

\(=(\sin x\pm \cos x)(1\mp \frac12\sin 2x)\)

\(IV\) Куб суммы или разности \((A\pm B)^3=A^3\pm B^3\pm 3AB(A\pm B)\) :

\((\sin x\pm \cos x)^3=(\sin x\pm \cos x)(\sin x\pm \cos x)^2=(\sin x\pm \cos x)(1\pm \sin 2x)\) (по первой формуле)

Источник

Что такое вспомогательный угол

Что такое вспомогательный угол. Смотреть фото Что такое вспомогательный угол. Смотреть картинку Что такое вспомогательный угол. Картинка про Что такое вспомогательный угол. Фото Что такое вспомогательный угол

Метод введения вспомогательного угла при решении тригонометрических уравнений

Пономарева Людмила Николаевна

ГБОУ города Москвы «Школа № 2121»

Предмет: математика

Рубрика: Хороший урок

Тема урока: Метод введения вспомогательного угла при решении тригонометрических уравнений.

Актуализация.

Учитель.

Ребята! Мы познакомились с различными видами тригонометрических уравнений и научились их решать. Сегодня обобщим знания методов решения тригонометрических уравнений различных видов. Для этого я прошу провести работу по классификации предложенных вам уравнений (см. уравнения №№ 1-10 в Приложении — в конце конспекта в PDF виде)

Заполните таблицу: укажите вид уравнения, метод его решения и сопоставьте номера уравнений виду, к которому они принадлежат.

Ученики. Заполняют таблицу.

Вид уравненияМетод решенияУравнения
ПростейшиеФормулы корней№1
Приводимые к квадратнымМетод замены переменной№2,3
Сложный тригонометрический видУпростить до известного вида с помощью формул тригонометрии№4,5
Однородные первой степениРазделить уравнение почленно на косинус переменной№6
Однородные второй степениРазделить уравнение почленно на квадрат косинуса переменной№7

Проблематизация.

Заполняя таблицу, учащиеся сталкиваются с проблемой. Они не могут определить вид и метод решения трех уравнений: №8,9,10.

Учитель. Все ли уравнения вам удалось классифицировать по форме и методу решения?

Ответ учащихся. Нет, три уравнения не удалось поместить в таблицу.

Учитель. Почему?

Ответ учащихся. Они не похожи на известные виды. Метод решения неясен.

Целеполагание.

Учитель. Как же тогда мы сформулируем цель нашего занятия?

Ответ учащиеся. Определить обнаруженный новый тип уравнений и найти метод их решения.

Учитель. Можно ли сформулировать тему занятия, если мы не знаем вида обнаруженных уравнений и метода их решения?

Ответ учащихся. Нет, но можно это сделать позже, когда разберемся, с чем имеем дело.

Планирование деятельности.

Учитель. Давайте спланируем нашу деятельность. Обычно мы определяем тип, а затем ищем метод решения тригонометрических уравнений. В нашей сегодняшней ситуации возможно ли дать определенное название виду обнаруженных уравнений? И вообще, принадлежат ли они одному виду?

Ответ учащихся. Это трудно сделать.

Учитель. Тогда подумайте, может что-то их объединяет, или они похожи на какой-то тип?

Ответ учащихся. Левая часть этих уравнений такая же, как у однородных, но правая их часть не равна нулю. А значит, деление на косинус только усложнит решение.

Учитель. Может быть, начнем с поиска метода решения, а затем определим типаж уравнения? Какое уравнение из 3-х кажется вам наиболее простым?

Учащиеся отвечают, но единства мнений нет. Возможно, кто-то догадается, что коэффициенты в уравнении №8 следует выразить как синус и косинус табличного угла. И тогда класс определит уравнение, которое можно решить первым. Если нет, то учитель предлагает рассмотреть дополнительное уравнение (см. уравнение № 11 в Приложении — в конце конспекта в PDF виде). В нем коэффициенты равны синусу и косинусу известного угла и ученики должны это заметить.

Учитель предлагает очередность пунктов деятельности. (Cм. уравнения в Приложении — в PDF виде, в конце конспекта).

Реализация плана.

Учитель. Ну что ж, план мы составили. Приступим к его реализации.

У доски ученик решает уравнение № 11.

Второй ученик решает следующее уравнение №8, предварительно поделив его на постоянное число и, тем самым, сведя ситуацию к уже найденному способу решения.

Учитель предлагает решить уравнения № 9,12 самостоятельно. Проверяет правильность преобразований и множество решений.

Учитель. Ребята, как можно назвать угол, который появляется вместо коэффициентов уравнения и помогает нам выйти на решение?

Ответ учащихся. Дополнительный. (Вариант: вспомогательный).

Учитель. Не всегда легко подобрать такой вспомогательный угол. Можно ли его найти, если коэффициенты не есть синус и косинус известных углов? Какому тождеству должны удовлетворять такие коэффициенты, если мы хотим их представить как синус и косинус вспомогательного угла?

Ответ. Основному тригонометрическому тождеству.

Учитель. Молодец! Правильно! Значит перед нами задача — получить такие коэффициенты, чтобы сумма их квадратов была равна единице! Постарайтесь придумать число, на которое нужно поделить уравнение так, чтобы выполнялось указанное нами условие.

Ученики думают и, возможно, предложат поделить все на корень квадратный из суммы квадратов коэффициентов уравнения. Если нет, то учитель подводит их к этой мысли.

Учитель. Нам остается выбрать, какой из новых коэффициентов обозначить синусом вспомогательного угла, а какой – косинусом. Возможны два варианта. От выбора зависит переход к простейшему уравнению с синусом, либо косинусом.

Ученики предлагают вариант решения, и учитель его завершает, обращая внимание на форму записи рассуждений и ответа. Решают уравнение № 10.

Учитель. Мы открыли для себя метод решения нового типа уравнений? Как назовем этот тип?

Ответ. Мы работали методом поиска вспомогательного угла. Может быть уравнения нужно назвать уравнениями, которые решаются с помощью вспомогательных углов?

Учитель. Конечно можно. А можно придумать формулу их вида? Это будет короче.

Ответ. Да. Уравнения с коэффициентами А, В и С.

Учитель. Давайте обобщим метод для произвольных коэффициентов.

Учитель обсуждает и записывает на доске формулы синуса и косинуса вспомогательного угла для обобщенных коэффициентов. Затем с их помощью решает уравнения №13 и 14.

Учитель. Достаточно ли хорошо мы овладели методом?

Ответ. Нет. Нужно прорешать подобные уравнения и закрепить умение пользоваться методом вспомогательного угла.

Учитель. Как мы поймем, что метод усвоили?

Ответ. Если самостоятельно решим несколько уравнений.

Учитель. Давайте установим качественную шкалу усвоения метода.

Познакомьтесь с характеристиками уровней и расположите их на шкале, отражающей уровень владения этим умением. Соотнесите характеристику уровня и балл (от 0 до 3)

Учитель. (После ответа учеников ) Итак, наша шкала оценок такова:

Характеристика уровняБаллОтметкаМой уровень
Не умею решать уравнения0 баллов2
Умею решать уравнения с табличными коэффициентами1 балл3
Умею решать уравнения с различными коэффициентами2 балла4
Умею решать уравнения повышенной сложности3 балла5

По такому же принципу оценим самостоятельную работу по теме на следующем уроке.

А сейчас, решите, пожалуйста, уравнения № 1148 г, 1149 г, 1150 г и определите свой уровень усвоения темы.

Не забудьте завершить записи в таблице и назвать тему: «Введение вспомогательного угла при решении тригонометрических уравнений».

Далее учащиеся 10 мин. работают самостоятельно. После чего сдают тетради с решением.

Рефлексия способа достижения цели.

Учитель. Ребята, достигли ли мы поставленной цели занятия?

Ответы учащихся. Да, мы научились распознавать новый тип уравнений.

Нашли метод их решения с использованием вспомогательного угла.

Научились применять метод на практике.

Учитель. А как мы действовали? Как пришли к пониманию того, что нам нужно делать?

Ответ. Мы рассмотрели несколько частных случаев уравнений с «узнаваемыми» коэффициентами и эту логику распространили на любые значения А, В и С.

Учитель. Это индуктивный путь размышления: мы на основе нескольких случаев вывели способ и применили его в аналогичных случаях.

Перспектива. Где мы можем применить подобный путь размышления? (ответы учеников)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *