Что такое вычисление в математике 3 класс примеры
Математика. 3 класс
Конспект урока
Математика, 3 класс
Урок № 57. Разные способы вычислений.
Перечень вопросов, рассматриваемых в теме:
Как выполнять устно вычисления в случаях, сводимых к действиям в пределах 1000, используя различные приёмы устных вычислений?
Как выбирать удобный способ?
Как выполнять проверку вычислений?
Круглым называется число, которое делится на 10, 100, 1000 и так далее, без остатка.
Каждая цифра в записи многозначного числа занимает определённое место – позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.
Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:
единицы называют единицами 1-го разряда
десятки называют единицами 2-го разряда
сотни называют единицами 3-го разряда и т. д.
Сложение – арифметическое действие в математике, в результате которого два или более чисел объединяется в единое целое, оно обозначается знаком «+». Слагаемое, слагаемое, сумма – главные составляющие математического действия сложения.
Вычитание – арифметическое действие, обратное сложению и обозначается оно знаком «-». Уменьшаемое, вычитаемое, разность- главные составляющие математического действия вычитания.
Основная и дополнительная литература по теме урока:
Моро М.И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 68-69
Волкова С.И. математика. Проверочные работы. 3 кл. — М.: Просвещение, 2018.С. 72-73
Рудницкая В.Н. Математика. Дидактические материалы. Ч.1. 3 кл. – М. «Вентана- Граф», 2016, с. 9-12
Теоретический материал для самостоятельного изучения
Вам уже знакомы приёмы устных вычислений в пределах 1000.
Но наша цель не просто узнать о них, а уверенно ими пользоваться.
Часто ученики допускают ошибки при решении примеров.
Сегодня мы более подробно остановимся на таких случаях и разберемся, как их избежать
Надеюсь, что после урока вы даже сможете посоревноваться с друзьями в устном счёте.
Вспомним приёмы устных вычислений, с которыми познакомились на прошлом уроке.
работаем с разрядными слагаемыми
работаем с общим количеством десятков.
Чтобы быстро и правильно решать такие примеры надо уметь выбирать более удобный способ.
А как выбрать удобный способ?
Выберем из этих примеров те, которые удобнее решать, работая с разрядными слагаемыми.
Согласитесь, что эти примеры будет легко решить, представив одно из слагаемых в виде суммы разрядных слагаемых.
Например: 420 + 50, десятки сложим с десятками и прибавим сотни, а при решении примера 320 + 500 сложим сотни и прибавим десятки.
Что же не так с остальными примерами?
Внимательно посмотри на числа. При выполнении действий с десятками происходит переход через разряд. Это вызывает затруднения.
Именно поэтому здесь удобнее воспользоваться вторым способом – работать с общим количеством десятков.
Пользуясь первым способом, нам пришлось бы из 50 вычитать 90, а это невозможно.
Приходит на помощь второй способ:
Тоже самое с остальными примерами.
Но есть ещё одна опасность при решении подобных примеров на вычитание.
Рассмотрим два примера:
На это очень важно обращать внимание!
Понаблюдаем за решением.
Если же ты сомневаешься в результате или просто хочешь убедиться в правильности, можно выполнить проверку.
Проверка выполняется обратным действием. Сложение проверяем вычитанием и наоборот.
Проверка: 260 + 300 = 560
Проверка: 360 + 240 = 600
Сегодня мы раскрыли вам секреты приёмов устного сложения и вычитания.
Пользуйтесь ими и удачи!
Задания тренировочного модуля:
Порядок действий в математике
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные операции в математике
Порядок вычисления простых выражений
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Подставляем полученные значения в исходное выражение:
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!
Математика 3 класс: примеры на умножение и деление, сложение и вычитание
Ваш ребенок еще только учится в начальной школе, а вы уже задумываетесь о его дальнейшей учебе, развитии и будущем? Это очень похвально. А думали ли вы над тем, что успеваемость ребенка можно улучшить, если заниматься с ним ежедневно по математике всего лишь 15 минут в день дополнительно? И это не выдумки. В материалах этой статьи мы приведем примеры и задачи для школьников начальной школы по математике, а именно, для третьеклассников. (Для удобства решения приведенные ниже задания вы можете распечатать).
Как учить ребенка учиться
Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.
А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.
Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.
Примеры по математике на умножение и деление
Еще во втором классе дети выучили таблицу умножения. Если вы сейчас находитесь в полном заблуждении, как выучить с ребенком таблицу умножения, то рекомендуем к ознакомлению следующий материал по ссылке. На протяжении второго класса школьники постепенно осваивали простые примеры и задачи, используя таблицу умножения, а в третьем классе они оттачивают навыки умножения и сложения.
Задание 1
Заменить сложение вычитанием в тех примерах, в которых от замены знака ответ не изменится:
5 + 5 + 5 =
1 + 1 + 1 + 1 =
0 + 0 + 0 + 0 + 0 =
8 + 8 + 8 + 8 =
7 + 7 — 7 + 7 =
7 + 7 + 7 — 7 =
14 + 14 =
61 + 61 =
Подсказка:
5 + 5 + 5 = 15, если заменить знак «+» на знак «•», то получится
5 • 5 • 5 = 125. 15 не равно 125. Значит, в первом равенстве заменить знак «+» на знак «•» нельзя.
По аналогии решаем стальные равенства и делаем выводы о возможной или невозможной замене знака «+» на знак «•».
Задание 2
Какие выражения нельзя заменить суммой, чтобы ответ не изменился:
0 • 4 =
1 • 0 =
1 • 1 =
1 • 6 =
0 • 9 =
7 • 0 =
5 • 2 =
2 • 2 =
Подсказка:
Вспомните, каким правилом следует пользоваться при умножении на ноль.
Задание 3
45 : 5 + 1 =
45 : 5 • 1 =
543 — 5 • 1 =
(543 — 5) • 1 =
423 + 7 • 0 =
(423 + 7) • 1 =
10 — 0 + 4 =
10 • 0 + 4 =
Задание 4
Из каждого выражения на умножение составьте выражения на деление:
6 • 8 =
7 • 1 =
4 • 0 =
0 • 3 =
4 • 9 =
6 • 8 = 48
48 : 8 = 6
48 : 8 = 6
Задание 5
Какое значение имеют следующие выражение:
а : а =
а : 1 =
0 : а =
а : 0 =
Задание 6
(596 + 374) • 1 =
596 + 374 • 1 =
(596 + 374) • 0 =
596 + 374 + 0 =
0 • 320 : 1 =
0 + 320 : 1 =
Обязательно повторите с ребенком правила умножения и деления числа на единицу и умножения или деления числа на ноль, а также особенности деления ноля на любое число. Часто именно в этих примерах дети делают ошибки, которые влекут за собой дальнейшее неправильное решение примеров, выражений и задач.
Задание 7 (задача)
В оздоровительный лагерь привезли фрукты: 7 ящиков винограда и 5 ящиков персиков. Масса привезенных персиков составляет 40 килограммов. Какая масса винограда, если ящик винограда на 1 килограмм весит больше, чем ящик персиков.
Решение
Найдем, сколько весит один ящик персиков. Известно, что общая масса персиков составляет 40 кг, а всего ящиков – 5.
Первое действие:
40 : 5 = 8 (кг) весит один ящик персиков.
Теперь найдем, сколько весит один ящик винограда, если известно, что он тяжелее на 1 кг, чем ящик персиков.
Второе действие:
8 + 1 = 9 (кг) весит один ящик винограда.
Теперь находим общую массу всего винограда, если известно, что один ящик весит 9 кг, а всего винограда – 7 ящиков.
Третье действие:
9 • 7 = 63 (кг) – общая масса винограда.
Ответ: масса привезенного винограда составляет 63 кг.
Задание 8
Сосна может расти 600 лет, береза – 350 лет. А ива – в 6 раз меньше от сосны. Что может расти дольше береза или ива? И насколько лет?
Решение
Вначале рассчитаем, сколько лет может расти ива, если известно, что она растет в 6 раз меньше, чем сосна.
Первое действие:
600 : 6 = 100 (лет) может расти ива.
Теперь, когда известно, что ива может расти 100 лет, сравним продолжительность «жизни» березы и ивы. Известно, что береза растет 350 лет, а ива – 100. 350 больше чем 100, значит береза может расти дольше ивы. Чтобы рассчитать, на сколько береза может расти дольше ивы, решаем равенство.
Второе действие:
350 — 100 = 250 (лет) – на столько береза может расти дольше ивы
Ответ: береза может расти дольше ивы на 250 лет.
Важно! Если задачу можно решить несколькими способами, обязательно сообщите об этом ребенку. Пусть потренирует логику и начертит все возможные схем решения задачи, т.е. составить схематическое условие. Ведь правильно составленное условие задачи – это 90% успешного решения.
Задание 9
В понедельник гусеница начала ползти вверх по дереву высотой 9 метров. За день она поднялась вверх на 5 метров, а за ночь – опустилась на 2 метра. На какой день гусеница достигнет верхушки дерева?
Решение
Для начала рассчитаем, на сколько метров поднимается гусеница вверх за один день, с учетом того, что ночью на опускается.
Первое действие:
5 — 2 = 3 (м) гусеница проползает за сутки вверх.
Теперь найдем количеств дней, необходимых на преодоление расстояния 9 метров вверх по дереву.
Второе действие:
9 : 3 = 3 (дня) нужно гусенице, чтобы достичь вершины дерева.
Ответ: 3 дня нужно гусенице, чтобы достичь вершины дерева.
Задание 10
В коробке было 18 килограммов печенья. Сначала из нее взяли 13 килограммов печенья, потом досыпали в 4 раза больше, чем оставалось. Сколько килограммов печенья стало в коробке.
Решение
Сначала найдем, сколько килограммов печенья осталось в коробке, после того, как из нее забрали 13 килограммов.
Первое действие:
18 — 13 = 5 (кг) печенья осталось в коробке
Теперь рассчитаем сколько килограммов печенья досыпали в коробку.
Второе действие:
5 • 4 = 20 (кг) досыпали
Сложим тот вес, который оставался в коробке, и тот, который досыпали, чтобы найти, сколько килограммов печения стало в коробке.
Третье действие:
5 + 20 = 25 (кг) стало
Ответ: 25 килограммов печения стало в коробке.
Задание 11
За лето хозяйка вырастила 208 домашних птиц. Кур и уток было 129, а уток и гусей – 115. Сколько кур, уток и гусей вырастила хозяйка за лето?
Решение
Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.
Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей
Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было кур.
Второе действие:
208 (птиц) – 115 (уток + гусей) = 93 кур
Теперь, когда мы знаем количество гусей и кур, а также общее количество домашних птиц, мы можем найти количество уток.
Третье действие:
208 — (79 + 93) = 36 уток
Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.
Второй вариант решения
Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.
Первое действие:
208 (птиц) – 129 (уток + кур) = 79 гусей
Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было уток
Второе действие:
115 (уток + гусей) – 79 (гусей) = 36 уток
Теперь, когда мы знаем количество гусей и уток по отдельности, а также общее количество домашних птиц, мы можем найти количество кур.
Третье действие:
208 – (79 + 36) = 208 – 115 = 93 кур
Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.
Примеры и задачи по математике на сложение и вычитание
Основной задачей заданий и примеров по математике на сложение и вычитание в третьем классе является популяризация математических знаний и идей, поддержка и развитие математических знаний школьников, стимулирование и мотивация учеников в изучении естественно-математический предметов.
Задание 1
Х – 40 = 60
Х + 4 = 61
Х – 16 = 25
Х + 25 = 84
Х – 45 = 251
Х + 56 = 106
Х + 78 = 301
Задание 2
Расставьте скобки так, чтобы ответом выражения в первом случае было 6, а в втором – 2:
Подсказка
12 : (2 + 2) • 2 = 6
12 : (2 + 2 • 2) = 2
Важно! Некоторые условия составлены таким образом, чтобы ребенок включал логическое мышление. Прорешивая такие задания он мыслит, делает предположения, размышляет, и находит правильное решение задания.
Задание 3
Перевести в одну систему измерения и решить выражения:
1 м – 5 дм =
1 м – 5 см =
6 м 5 дм – 8 дм =
5 см + 5 см =
15 см + 5 дм =
3 дм – 6 см =
3 дм 5 см – 15 см =
1 дм 2 см – 3 см =
1 м 6 дм – 8 дм =
Задание 4
Из каждого выражения произведения отнять 15 и записать новые выражение и решить их:
7 • 3 =
7 • 6 =
7 • 9 =
8 • 6 =
8 • 4 =
3 • 9 =
4 • 4 =
5 • 7 =
Подсказка
Если 7 • 3 = 21, то 21 – 15 = 6
Задание 5
7 • 6 + 7 • 4 =
21 : 3 – 6 =
(35 – 28) • 5 =
(68 – 26) : 7 =
7 + (6 : 2) =
3 – 14 : 2 =
60 – 63 : 7 =
81 – 56 : 7 =
50 + 42 : 7 =
Задание 6 (задача)
В шести одинаковых бочонках 24 литра воды. Сколько литров воды в сети таких же бочонках, на сколько литров больше во втором случае, чем в первом?
Решение
Вначале найдем, сколько воды вмещается в один бочонок.
Первое действие:
24 : 6 = 4 (л) в одном бочонке
Теперь рассчитаем, сколько воды в семи одинаковых бочонках
Второе действие:
4 • 7 = 28 (л) в сети одинаковых бочонках
Найдем ответ на главный вопрос задачи, на сколько литров больше во втором случае, чем в первом.
Третье действие:
28 – 24 = 4 (л) на столько литров больше во втором случае, чем в первом
Ответ: на 4 литра воды больше во втором случае, чем в первом
Задание 7
Отец и сын купили на рынке картошку в 6 одинаковых сетках. Отец принес домой 4 сетки, а сын 2. Всего получилось 18 килограммов картошки. Сколько килограммов принес отец? Сколько килограммов принес сын? На сколько больше килограммов картошки принес отец?
Решение
Рассчитаем, сколько картошки было в одной сетке, если известно, то всего принести 18 килограммов в 6 одинаковых сетках.
Первое действие:
18 : 6 = 3 (кг) в одной сетке.
Теперь узнаем сколько килограммов принес отец и сколько килограммов принес сын.
Второе действие:
3 • 4 = 12 (кг) принес отец
Третье действие:
3 • 2 = 6 (кг) принес сын
Найдем искомую разницу.
Четвертое действие:
12 – 6 = 6 (кг) на столько больше принес отец.
Ответ: Отец принес на 6 килограммов больше картошки, чем сын.
Задание 8
За 5 часов работы двигателя было израсходовано 30 литров бензина. Сколько бензина будет израсходовано за 8 часов работы двигателя. На сколько больше двигатель израсходует бензина за разницу во времени?
Решение
Рассчитаем, сколько бензина расходует двигатель за час своей работы.
Первое действие:
30 : 5 = 6 (л) за один час работы
Рассчитаем, сколько составляет разница во времени?
Второе действие:
8 – 5 = 3 (ч) разница во времени
Теперь можно рассчитать, сколько бензина израсходовано за оставшиеся 3 часа.
Третье действие:
3 • 6 = 18 (л) потрачено за 3 часа.
Ответ: за 3 часа двигатель истратил 18 литров бензина
Второй способ решения
Рассчитаем, сколько бензина расходует двигатель за час своей работы.
Первое действие:
30 : 5 = 6 (л) за один час работы
Рассчитаем, сколько бензина будет израсходовано за 8 часов работы двигателя.
Второе действие:
8 • 6 = 48 (л) израсходовано за 8 часов работы двигателя
Теперь можно рассчитать разницу потраченного топлива.
Третье действие:
48 – 30 = 18 (л) разница потраченного топлива
Ответ: за 3 часа двигатель истратил 18 литров бензина
Важно! Задания на сложение и вычитание не исключают в своем условии или решении возможность других математических действий, например, умножения или деления. Ученик третьего класса уже должен уметь различать в условии требования к сложению и умножению, делению и вычитанию. Именно потому задания по математике для этого класса часто носят смешанный характер.
Задание 9
В двух прудах плавало 56 уток. Когда из первого пруда во второй перелетело 7 уток, то в нем осталось 25. Сколько уток с самого начала плавало во втором пруду?
Решение
Известно, что после того, как из первого пруда улетело 7 уток, в нем осталось 25. Находим количество уток в первом пруду с самого начала.
Первое действие:
7 + 25 = 32 (утки) было в первом пруду.
Теперь можем найти, сколько уток плавало во втором пруду с самого начала.
Второе действие:
56 – 32 = 24 (утки) было во втором пруду.
Ответ: с самого начала во втором пруду было 24 утки.
Задание 10
С первого куста собрали 9 килограммов ягод. Со второго куста собрали на 3 килограммов больше, чем с первого, а с третьего – на 2 килограммов больше, чем со второго. Сколько килограммов ягод собрали с третьего куста? Сколько всего ягод собрали?
Решение
Вначале найдем, сколько килограммов ягод собрали со второго куста.
Первое действие:
9 + 3 = 12 (кг) ягод со второго куста
Теперь определяем, сколько килограммов ягод собрали с третьего куста
Второе действие:
12 + 2 = 14 (кг) год с третьего куста
Когда все составляющие известны, находим ответ на главный вопрос задачи.
Третье действие:
9 + 12 + 14 = 35 (кг) ягод всего
Ответ: всего собрали 35 килограммов ягод.
Вместо заключения
Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.
Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.